DYNAMIC SOFTWARE UPDATING

Michael Hicks

A DISSERTATION

m

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2001

Scott M. Nettles
Supervisor of Dissertation

Val Tannen
Graduate Group Chair

COPYRIGHT
Michael Hicks
2001

Acknowledgements

This dissertation, while an achievement that bears my name, would not have been possible
without the help of others, who I would now like to thank. First and foremost, I thank
God. He has been a hidden, guiding force throughout my life, and has been a source of
strength and consolation during the writing of this document, and indeed throughout my
days as a graduate student. As a close second, I thank my family, especially my wife.
She has been especially patient and understanding during what was anticipated to be a
four year process, though has now ended at six years. My son Timothy, born during this
research, became my close companion during the writing of the dissertation. Some days
he would be asleep in his stroller while I typed away on a park bench. Many times, he
protested as I divided my time between him and my other “baby.” In the end, he provided
a great joy that made it possible, though challenging, to complete this work. My parents
deserve credit, among so many other things, for teaching me that good things come with
hard work and perseverance. My brother has served as a constant source of inspiration,
showing me that short term sacrifice can lead to everlasting reward, and that with love
anything is possible. Without the support of all these people, it would have been difficult
indeed for me to complete a Ph.D.

I know how to do research thanks to my advisor. Scott has been a patient and en-
couraging guide, showing me the way but never demanding I move any faster or slower
than I was ready to. He provided structure yet allowed great independence, encouraging
exploration and self-improvement. Thanks to him, I have done research in many areas,
creating a foundation for exciting things to come. I must also thank my other “advisor,”
Jonathan Smith. Jonathan was generous enough to support me after Scott left Penn,
nearly three years ago. Without him, I would not be getting this degree. Jonathan has
been a wonderful friend and support, always looking out for my best interests, despite
inconvenience to himself.

I must also thank my committee for their input and feedback. Any competence I have
in programming language theory I owe to Benjamin Pierce. His wonderful course on type
systems provided insight as well as information, and greatly broadened my understanding
in the area. Greg Morrisett has also been a great source of insight, affirming that my
intuitions as a “systems” person are completely relevant to the way programming languages
should be designed and implemented. Two of Greg’s students, Karl Crary and Stephanie
Weirich, contributed greatly to the theoretical aspects of this work (specifically Chapters 5
and 6) and in the process taught me a lot about the area. Insup Lee and Mark Segal
provided excellent suggestions drawing from their own research experience in dynamic
updating.

Working in the Distributed Systems Lab has been a wonderful experience, both per-
sonally and professionally. I have made so many friends, each of whom contributed in

iii

varying levels to this work and the work that preceded it. Jonathan Moore, a member of
the fabled “Mike and Jon show,” has been my research companion on so many projects; I
owe much of my success to him. More importantly, Jon, and his wife Jessica, have been
two of my best friends. I should also thank Scott Alexander who, as the result of an
unsubstantiated claim in his own thesis, inadvertently provided me with my own thesis
topic! I also received excellent feedback and encouragement from many others, and did
some great work with them, including Luke Hornof, Steve Muir, Jessica Kornblum, Sotiris
Toannidis, and Angelos Keromytis. I will never forget our monumental games of WarCraft
II and StarCraft; some day I will find a way to have these experiences add value to my
research (it is possible; see Baughman and Levine [BLO1]). Thanks so much to everyone;
it has been a wonderful six years!

v

Abstract

DYNAMIC SOFTWARE UPDATING
Michael Hicks
Supervisor: Scott M. Nettles

Many important applications must run continuously and without interruption,yet must
be changed to fix bugs or upgrade functionality. To date, no existing, general-purpose
methodology for dynamic updating achieves a practical balance between flexibility, ro-
bustness, low overhead, and ease of use.

We present a new approach for imperative languages that provides type-safe dynamic
updating of native code in an extremely flexible manner (code, data, and types may be
updated, at programmer-determined times) and permits the use of automated tools to aid
the programmer in the updating process. Our system is based around dynamic patches,
which contain both the updated code and the code needed to transition from the old ver-
sion to the new. A novel aspect of our patches is that they consist of verifiable native code
(or VNC, see [Nec97, MWCGY9]), which is native code accompanied by annotations that
allow on-line verification of the code’s safety. We discuss how patches are generated mostly
automatically, how they are applied using our own novel dynamic-linking technology for
VNC systems, and how code is compiled to make it updateable.

To concretely illustrate and validate our system, we have implemented a sizeable ap-
plication: a dynamically updateable web server, called FlashEd. We discuss our experi-
ence building and maintaining FlashEd. Performance experiments show that updateable
FlashEd runs roughly 2% slower than a static one under various workloads.

Contents

Acknowledgements

Abstract

1 Introduction

1.1 Motivation e e e
1.1.1 Redundant Hardware
1.1.2 State Transfer
1.1.3 Dynamic Linking o oo

1.2 Thesis

2 Goals
2.1 Criteria of Evaluation,
2.2 Evaluating Past Work by Characteristic
221 Flexibility
2.2.2 Robustness
2.2.3 Efficiency
224 Easeof Use e e
2.2.5 SUmMmMAary o e e e
3 Approach
3.1 Strategy
3.1.1 Limitations
3.2 Evaluating Our Approach,
3.2.1 Contributions
3.3 Roadmap
4 Background
4.1 TAL . . . e
4.2 Popcorn e
4.2.1 Control Flow
4.2.2 Data e
4.2.3 Functions e
4.2.4 Parametric Polymorphism L.
4.2.5 Type Abstraction
4.2.6 Added Features

vi

iii

12
13
15
18
18
19

20
20
23
24
25
26

5 Dynamic Linking in TAL 38

5.1 Background 39
5.1.1 Static Linking 39
5.1.2 Dynamic Linking o o 40

5.2 TAL/Load 42

5.3 Theload-calculus 45
5.3.1 The Untyped load-calculus 46
5.3.2 Adding Types. e 50
5.3.3 Adding Named Types 53
5.3.4 Properties of the load-calculus 59

5.4 TImplementation L L 60
5.4.1 Passing Types at Runtime 60
5.4.2 load 60
5.4.3 checked_cast 64

5.5 Discussion e 64
5.5.1 The load-calculus with Type Environment Masks 65
5.5.2 Implementing Type Environment Masks 66

6 DLpop: Dynamic Linking with TAL/Load 68

6.1 DLpop: A Type-safe DLopen 68

6.2 Compilation 72
6.2.1 Dynamically Linked Files, 72
6.2.2 Statically Linked Files 75

6.3 The DLpop Library 75

6.4 Discussion e 79
6.4.1 Examining dyninito 0oL 79
6.4.2 Programming Other Linking Strategies 80

7 Dynamic Updating 88

7.1 Dynamic Patches 88
7.1.1 Changes to Code and Data 89
7.1.2 Changes to Type Definitions 92
7.1.3 Limitations 93

7.2 Enabling Dynamic Patches 95
7.2.1 Code and Data Updates 96
7.2.2 Updating Type Definitions 97

7.3 DLpop/update: A DLpop Supporting Updating 99
7.3.1 Patches 100
7.3.2 DLpop/update Library 102
7.3.3 Compilation 106

7.4 Discussion e 110
7.4.1 Updating Pointers to Functions and Data 110
7.4.2 Loaded Code and Garbage Collection 116
7.4.3 Updating by Reference Indirection 118

vii

8 Building Updateable Systems
8.1 Constructing Dynamic Patches
8.1.1 Automatic Patch Generation
8.2 When to Apply Patches
8.2.1 Imterrupt Model
8.2.2 Invoke Model

9 FlashEd: an Updateable Webserver
9.1 Building FlashEd to be Updateable
9.1.1 Update Timing
9.1.2 Fatal Error Handling
9.2 Updating FlashEd in Practice
9.2.1 Update Chronology
9.2.2 Patch Construction
9.2.3 Testing Patcheso
9.3 Lessons Learned

10 Performance

10.1 Dynamic Updating Component Costs
10.1.1 Runtime Overhead
10.1.2 Load-time Overhead
10.1.3 Start-time Overhead
10.1.4 Space Overhead

10.2 Application Performance
10.2.1 FlashEd Performance

11 Future Work

11.1 Functional Languages
11.1.1 Pointers to Updateable Definitions
11.1.2 Closures v v v e e e e e e e e e e
11.1.3 Limitations e

11.2 Object-oriented Languages i

11.3 Update Validity and State Visibility
11.3.1 Globally Visible State
11.3.2 Module-protected State
11.3.3 Thread-maintained State,
11.3.4 Abstract Data

11.4 Active Networks

11.5 Other Improvements
11.5.1 Unchecked Updates
11.5.2 Namespace Management and Security
11.5.3 Updating Abstract Types

12 Conclusions
12.1 Contributions

viii

122
124
125
130
132
134

137
137
137
139
140
140
141
144
145

147
147
147
149
151
152
156
158

163
163
163
169
170
171
172
173
173
174
174
175
177
177
177
178

179

A Proofs for Formal Properties of TAL/Load
A1 Theload-calculus
A1l Syntax
A.1.2 Operational Semantics
A.1.3 Static Semantics
A.2 Properties of Type Environments
A.3 Propertiesof Heaps
A.4 Properties of Type Derivations
A5 Type Soundnesso e
B Related Work
B.1 State Transfer
B.1.1 Process Migration
B.1.2 Checkpointing
B.1.3 General-purpose Persistence 0oL
B.2 Linking
B.2.1 Static Linking oo
B.2.2 Dynamic Linking oo
B.3 Dynamic Updating
B.3.1 DYMOS e
B.3.2 Dynamic Module Replacement in Argus
B.3.3 Conic e
B.3.4 PODUS e
B.3.5 Reconfigurable PolyLith
B.3.6 On-line Software Version Change
B3.7 Erlang
B.3.8 Dynamic ML
B.3.9 Dynamic Classes for C++
B.3.10 Dynamic Java o o
B.3.11 Dynamic Java Classes v i it
B.3.12 DITools e
B.3.13 Guarded Software Updating
B.3.14 Dynlnsto L

B.3.15 Dynamic Architectures

Bibliography

ix

182
182
183
183
184
186
187
188
191

197
197
197
197
198
198
198
199
200
201
201
202
202
203
204
205
206
207
207
207
208
208
209
210

210

List of Tables

2.1

9.1

10.1
10.2
10.3

10.4
10.5

Evaluating previous general-purpose updating systems 12
Summary of changes to versions 0.2 through 0.4 of FlashEd 141
The overhead of usinga GOT, 148
Time to load and link patches for FlashEd 0.3 —-0.4 151
Breakdown of space overhead components based on when files are linked

and whether they use dynamic linking or dynamic updating. 152
Per-symbol object file overheads due to dynamic linking and updating . . . 153
Space overhead for FlashEd 0.1 compiled for loading or updating 157

List of Figures

1.1 Plug-in extensibility: extensions are “plugged-in” to an extension interface
in the running program.

3.1 The trusted and untrusted components of our implementation in TAL. . . .

5.1 Two C modules to be linked together.
5.2 Untyped load-calculus Syntax
5.3 Operational rules for the untyped calculus, excluding load
5.4 Rules for load in the untyped calculus
5.5 Typed load-calculus syntax, minus named types (changes from Figure 5.2) .
5.6 Well-formedness for types and heap types
5.7 Well-formedness for expressions, heaps, and programs
5.8 load-calculus syntax including support for named types.
5.9 Additional and/or modified rules defining well-formedness for types, heap
types, expressions, heaps, and programs
5.10 Type environments and type environment values: operators and relations
5.11 The implementation of load
5.12 Code sequence for TAL “macro” instructions
5.13 Operational rules for load using a type environment mask

6.1 DLpop library interface o
6.2 DLpop dynamic loading example
6.3 Compilation of dynamically loadable code
6.4 Compilation of statically linked code
6.5 Popcorn code for dynamic symbol table lookup
6.6 Compilation of dynamically loadable code to resolve functions on-demand .
6.7 Compilation of dynamically loadable code to use runtime code generation .

7.1 Example file main.pop (without the popmain function)
7.2 Dynamic patch for main.pop: (main.pop(2),S)
7.3 Dynamic patch for main.pop: (main.pop(3),S,{f — stub_f})
7.4 Dynamic patch for main.pop: (main.pop(41),S,{f — stub_f})
7.5 Alternative notion of dynamic patch for main.pop: (main.pop(4s),S,{}, {t —

convert t})
7.6 Two ways to update codeand data
7.7 Two methods of updating type definitions: replacement and renaming . . .
7.8 Patch description and interface code files for Figure 7.3
7.9 Patch description and interface code files for Figure 74

xi

5

22

40
46
47
49
50
ol
52
95

56
o8
61
63
66

69
71
73
76
7
81
86

7.10
7.11
7.12
7.13
7.14
7.15
7.16
717
7.18
7.19
7.20
7.21

8.1
8.2
8.3
8.4
8.5

9.1
9.2

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

11.1
11.2
11.3
11.4

Al

Converting the patch file from Figure 7.8 into a Popcorn file 102

Converting the patch file from Figure 7.9 into a Popcorn file. 103
Compiling code to be loadable and updateable. 107
Compiling a patch file to be loadable and updateable 109
Compiling a statically linked file to be updateable 111
The file fnptr.pop, which uses function pointers. 112
A first attempt at patching the code in Figure 7.15 113
A patch for fnptr.pop 114
Copying an array by reference during a dynamic update 117
Indirection via the dynamic symbol table 119
Implementation of per-module hashtable in dynamic symbol table 120
Dynamic symbol table and rollback list following a dynamic update 121
Building and maintaining an updateable program 123
Structure of the automatic patch generator tool 125
The old and new versions of example file foo.pop. 128
The patch and supporting files generated for foo.pop 131
Two models for updating a single-threaded program 132
Structure of FlashEd and FlashEd update procedure 138
Timeline of major FlashEd updates. 141
Code for accessing external values with and without a GOT 148
The component costs of dynamic linking relative to file size. 150
Space overhead for loadable or updateable FlashEd 0.1 object files 154
Space overhead for loadable or updateable FlashEd 0.1 types files 155
Filelist used in the log-based test. 159
Flash and FlashEd throughput (Mbits/sec) for the log-based test 159
Flash throughput for URL-based tests 161
Correlating the overhead of updateability with URL file size 162
Transforming fnptr.pop to be loadable and updateable 165
Transforming fnptr.pop to notice updates to function pointers 166
The interface to Popcorn’s Fn module 169
An Active Router supporting user-extensions 175
Facts used in load-success case of the proof of Subject Reduction 192

xii

Chapter 1

Introduction

Many computer programs must be “non-stop,” that is, provide continuous and uninter-
rupted service. This is especially true of mission critical applications, such as telephone
switches, financial transaction processors, airline reservations and air traffic control sys-
tems. In addition, the importance of the Internet and its link with the global economy
has broadened needs, making non-stop service important to less sophisticated users par-
ticipating in e-commerce.

Non-stop systems are not immune to the need for upgrades and bug fixes. In the
simplest case, software changes require the system to be shut down, updated, and then
brought back on-line. This approach has two consequences. First, any state accumulated
by the application will be lost when the old application is shut down. Second, any pro-
cessing in progress at the time of shutdown will be canceled. In some situations, these
consequences are acceptable. For example, if the only program state is a cache of some
kind, then losing it will only affect performance, not correctness. Similarly, a properly
architected transaction system will prevent canceled processing from adversely affecting
stable state. However, in the worst case, lost state and canceled processing may translate
to lost revenue, compromised safety, and incorrect execution.

Thus, in general, non-stop systems require the ability to update software without ser-
vice interruption. Our goal is to show that dynamic software updating can be achieved
in a practical, general-purpose manner that is flexible, efficient, robust and is easy to use.
To demonstrate this thesis, we have built a dynamic updating system which we show has
all of the desired characteristics. Furthermore, using this system, we built a non-trivial,
dynamically updateable application, the FlashEd webserver. We explain how FlashEd
has been updated over time, and in so doing, show that the system is flexible and easy
to use. We argue that FlashEd is robust both due to measures that promote program
and patch correctness, including automated safety checking and mostly automatic patch
generation, and because the compilation and library support for updateability is simple to
implement and has only a small trusted component. Finally, we show that the updating
system imposes only a negligible overhead on FlashEd’s performance.

1.1 Motivation

Enabling dynamic software updating is not a new problem; many solutions exist and are
widely deployed. Past approaches have been both general-purpose and application-specific,
and generally employ one of two mechanisms to realize dynamic updating: state transfer

or dynamic linking. Many past systems that employ state transfer also use redundant hard-
ware. We highlight the elements of these approaches below and point out their weaknesses,
motivating our work.

1.1.1 Redundant Hardware

Because systems that require dynamic code updates are non-stop, they frequently employ
redundant hardware to support fault tolerance. As a result, many updating approaches
assume redundant hardware is present. Generally speaking, to perform an on-line upgrade
with these approaches, a secondary machine is loaded with new code, passed the necessary
state from the primary, and ‘switched over’ to become the primary system.

A good example of this approach is employed by ACARS, the digital messaging system
used by the airlines, developed and maintained by ARINC, Inc. [ARI]. This system uses
a centralized, special-purpose router for relaying messages to and from aircraft. To enable
dynamic updates and improve robustness, this router consists of two machines, one a
primary and the other a hot standby. The primary machine software, in addition to
performing all message processing, is engineered to communicate its state to the standby
machine, either periodically or on-demand. When the system needs to be updated, the new
software is loaded on the standby machine, which immediately requests a state transfer
from the primary to initialize itself. The two machines then switch roles, so that the
updated machine becomes the primary and starts processing messages. The now-standby
machine is then loaded with the new software, completing the update. This architecture
is similar to the one employed by Lucent for its 5ESS™ circuit switches [5ES]. Some
systems avoid transferring state directly between machines by keeping it in stable storage,
say by using a database. When a new version of the program starts up, it reads in its
startup state from the database.

The primary/secondary architecture is frequently generalized to arbitrarily many ma-
chines to increase availability. Incoming transactions are routed to available servers, and
servers can be brought up or down as needs demand. For example, Visa makes use of
21 mainframe computers to run its 50 million line transaction processing system. This
system is updated as many as 20,000 times per year, but tolerates less than 0.5% down-
time [Pes00].! Parts of the system are brought down, updated with new software, and then
brought back on-line, while the operating mainframes continue to process transactions.

Given its popularity, the technique of combining redundant hardware with software-
enabled state transfer is obviously effective. It is especially appealing in situations in
which redundant hardware is required anyway to support fault tolerance. However, we
would prefer not to formulate an approach to dynamic updating that requires redundant
hardware, for two reasons:

1. Redundant hardware adds cost and complexity. If a system does not require redun-
dant hardware for other reasons, we would prefer not to require it for software up-
dating. In fact, many systems that require upgradeable, non-stop service do not em-
ploy fully-redundant hardware. Examples include communications components (e.g.

I Twenty-thousand updates per year seems quite high, but I was unable to get VISA to better explain
the number. Regardless, we can believe that updates occur reasonably frequently.

routers, firewalls, NAT translators, etc.), less sophisticated Internet servers, medical
monitoring systems, and others. Furthermore, there are many non-redundant sys-
tems that do not necessarily require non-stop service but would certainly benefit from
it. For example, rather than having to reboot a PC each time its OS is upgraded,
we would prefer to realize the updates dynamically.

2. An updating system not requiring redundant hardware will be relevant on systems
that happen to use it. On the one hand, divorcing the concerns of fault tolerance
(say) from updating may prevent the sharing of implementation mechanisms like
state transfer, but on the other hand the resulting design is more general and more
modular.

1.1.2 State Transfer

In addition to being used with redundant hardware, state transfer can be performed be-
tween processes running on the same machine. In general, making an application update-
able via state transfer (whether or not it uses redundant hardware) requires the program-
mer or system to do three things:

1. Identify the state that will need to be transferred to the new version. We call this the
persistent state, since it must persist between application versions. All other state
is referred to as ephemeral.

2. Develop a means to encode and decode the persistent state, and a means to transfer
it from the old to the new version.

3. Build the new version to be able to start with the old version’s (decoded) state,
potentially transforming that state to be usable by the new code.

Application-specific approaches that employ state transfer, like the ones we described in
the previous subsection, typically require the programmer to perform all three of these
tasks, which can be tedious, and potentially quite difficult or even impossible. For exam-
ple, relating to point 1, state that is stored in the operating system, like a process’s file
descriptor associations, cannot readily be transferred between machines or processes, and
therefore cannot be made persistent. Similarly, state stored in application libraries may
not be available, since it is hidden behind the library interface. An example is the current
value of the seed in a random number generator. Regarding point 2, the more complicated
the persistent state, the more tedious it is to encode and decode. For example, pointers
need to be made platform-independent, so they cannot be captured by simply recording
the address in the running process. In addition, depending on how the state is encoded
and transferred, restarting the program with that state can be overly time-consuming; for
example, when state information is stored incrementally in a log format, the entire log
must be replayed to regenerate the state [Seg].

While application-specific state encoding and decoding to transfer state can ‘get the job
done,” we would prefer to use a more general-purpose approach, ignoring points 1 and 2,
focusing on the truly application-specific task of state transformation. That is, we prefer
to assume that all state in the program is potentially persistent, removing the guesswork

and possible error by the programmer. This also frees us from using a database or other
special-purpose mechanism, unless other requirements demand it, simplifying program
construction. Furthermore, we would rather that the system perform the encoding and
decoding of the state automatically, as opposed to requiring the programmer to do so.

A number of general purpose approaches to enable state transfer have been developed.
For example, checkpointing [Pla97] and general-purpose persistence [PJW96] are means
to generally and automatically capture a program’s state for later restart, e.g. to support
process migration [Smi88|. However, these approaches have a number of problems:

1. Like application-specific state transfer, OS-level datastructures cannot, in general,
be captured. This includes file descriptors for open socket connections.

2. Most approaches are process image-dependent, which simplifies the process of cap-
turing and restoring state but makes that state all but unusable to different process
images. Since we are interesting in updating a process with new code, its image
would obviously change between the capture and restore of the state.

3. Some approaches provide portable state capture across different architectures [Hof93,
RS97], such that the state is stored in a more abstract form; in principle this should
allow it to be used by different process images. However, in practice this is not the
case. Though abstract, the captured state still matches the structure of the capturing
program (most importantly its stack), making even simple program restructurings
problematic. Furthermore, in general, pointers cannot be distinguished from integers
without user-assistance; this is the same problem that occurs in conservative garbage
collection [BW88]. Finally, using a source-to-source translation to enable portable
state capture introduces a potentially significant overhead on running code due to
code insertions required to unwind the stack.

Despite these limitations, automatic state transfer has been successfully employed in a
number of systems and scenarios to perform or support dynamic updating [GJ93, Hof93,
TTAT99, GBHC00]. In particular, when OS-resident data structures need not be cap-
tured,? or when global state is simple and program structure is not appreciably changed,
automatic state transfer can serve as an elegant means to upgrade without halting service.

However, the limitations of state transfer preclude its application to larger, network-
oriented systems, like e-commerce servers, since connection data (i.e. the socket file
descriptor table) is stored in the OS. This rules out a sizeable class of applications if
losing connections at update-time is unacceptable. Some problems can be solved using
application-specific approaches, but with more effort. In short, to use state transfer as the
core dynamic updating technology requires either sacrificing some flexibility when using a
general-purpose tool (and potentially performance as well), or adding complexity and cost
when using an application-specific approach. Either way, the programmer bears a greater
burden to make software updateable.

2Some specialty operating systems perform state capture, e.g. in EROS [SSF99].

main N

program /]| extension

(client) / <

extension

interface < _
- extension

Figure 1.1: Plug-in extensibility: extensions are “plugged-in” to an extension interface in
the running program.

1.1.3 Dynamic Linking

Many systems employ dynamic linking to realize software adaptability. In some sense,
dynamic linking is the converse of state transfer; rather than trying to move a program’s
state to a different program, we instead move the program to the state. As a result, there
is no need for redundant hardware, or even redundant processes, and the programmer no
longer needs to identify persistent state or develop a means to capture it and restore it.
Instead, the programmer need only transform the state as necessary to work with the new
code (a requirement of state transfer as well). In addition, dynamic linking is popular and
quite simple to implement, decreasing the system’s overall complexity, and we can often
verify that loaded code is safe (c.f. Java [jav96]); together, simplicity and safety improve
the system’s robustness.

However, dynamic linking has flexibility problems of its own. In its most common use,
dynamic linking implements plug-in extensibility, an approach in which loaded code is con-
strained to match a pre-defined signature expected by its clients; correctly formed loaded
code is called a plug-in. Plug-ins are used in many systems, including so-called extensible
operating systems (e.g. SPIN [BSP95] and Exokernel [EKO95]), commodity operating
systems (e.g. Linux), adaptable distributed systems (e.g. Cactus [Cac| and [Ens]), web
browsers, and others. Plug-in extensibility is insufficient for dynamic updating simply
because only parts of the system (the plug-ins) are allowed to change.

Plug-in Extensibility

Essentially, plug-in extensibility is a technique that abstracts the shape of loadable code.
Loaded code is accessed by the running program, the client, through an extension interface.
Extensions, while internally consisting of arbitrary functionality, may only be accessed by
the client through the extension interface, which does not change with time. This idea is
illustrated abstractly in Figure 1.1.

To use plug-in extensibility, the programmer must do two things:

1. Identify those elements in his program that should be subject to change. These will
be the plug-ins for the program.

2. Create a common, abstract interface for those components to be used by the rest of
the program.

Plug-ins are used in many systems. For example, in the Linux kernel, plug-ins are used,
among other things, to implement socket handlers for various protocols. Each handler
has an abstract interface for use by the networking code consisting of the socket interface
functions. That is, each handler will implement an open function, a connect function, a
close function, etc. When a user attempts to open a socket of a particular type, say IPX,
the handler for that socket type is loaded (if not already present) and its open function is
invoked. Future uses of that socket will use the IPX handler.

Active, or programmable, network implementations frequently employ plug-in extensi-
bility (e.g. [YdS96, HMAT99, WGT98, MBC'99] and others), having the goal of evolving
network service on demand. As an example, consider the PLANet [HMA199] active in-
ternetwork. PLANet is based on a two-level architecture that provides lightweight, but
limited, programmability in the packets of the network, and more general-purpose extensi-
bility in the routers. Packet headers are replaced by programs written in a special-purpose
language PLAN [HKM98], resulting in much greater flexibility than traditional head-
ers. When packets arrive at a node to be evaluated, their PLAN programs may call node
resident service routines, which form the second level of the architecture. The service rou-
tine space is extensible, allowing new service routines to be installed or removed without
stopping the execution of the system. This is implemented by dynamically linking code
that implements the new service and registering it in a symbol table used by the PLAN
interpreter.

PLANet services are plug-ins. Every time that a PLAN program invokes a service, that
service’s name is looked up in the symbol table, and the corresponding service routine is
returned as a function pointer. Since the lookup code does not know anything about
particular services, the type of the function returned must match the extension interface,
just as the socket handler used by Linux must match the socket interface. In this case, all
services take as arguments a variable-length list of PLAN values and a PLAN packet and
return a PLAN value.

Plug-ins are convenient because they abstract the kinds of changes that may be made
in the future, and thus give the current code an interface to deal with those changes. In the
Linux case, the socket code does not care what code it is calling, only that it will perform
the proper kind of function (like setting up a socket object and returning it). Similarly
with PLAN services, the caller (the PLAN interpreter) only cares that the service function
performs some action with the given arguments and returns a PLAN value.

While plug-ins can be used to simply and easily implement bounded changes in a
program, they cannot easily support arbitrary changes dynamically. This is because po-
tentially many parts of the system are not plug-ins, and therefore they cannot be changed.
For example, while we can add new service routines to PLANet, thereby upgrading the

service API for PLAN programs, we cannot alter PLANet’s more low-level components,
such as the PLAN interpreter itself, the way in which PLAN programs are encoded on the
wire, the way packets are queued, etc. The code that implements these features is not a
plug-in, and therefore not subject to change.

One might argue that a system could be constructed such that all (or as many as
possible) of its components are plug-ins. As is argued more extensively in [HNO0O], the task
of converting a program by hand so that all of its components are plug-ins is non-trivial.
Furthermore, the converted program is much harder to read since it now contains sizeable
amounts of ‘scaffolding’ code to enable various types of plug-in components. Instead, we
would prefer that this conversion be automatic, allowing the programmer to write code in
the traditional manner. In essence, this is the approach that we, and others, have taken
to realizing dynamic software updating.

1.2 Thesis

As we have discussed so far, existing technologies for dynamic software updating have
important limitations. Employing redundant hardware adds to system cost and complexity
when not otherwise needed, and the enabling technologies of state transfer and dynamic
linking are not as flexible as we might like. Many current solutions employ application-
specific techniques, which places an extra burden on the programmer, and obviously the
formulated approaches are less general.

Many past researchers have recognized these problems, and have formulated general-
purpose approaches to dynamic updating that achieve a reasonable level of success. While
we defer a more detailed discussion of the strengths and weaknesses of these systems until
the next chapter, we can summarize by saying that no prior system emphasizes the system’s
practicality as much as we would like. As a result, we are motivated to explore the space of
possibilities for general-purpose, dynamic software updating systems, with an eye toward
building a system that is practical.

What makes a practical updating system? A practical system must be flexible; the more
limitations it has, the more likely that a change cannot be reflected dynamically, without
stopping service. In addition, a practical system must be robust; the more potential there
is for error, the more chance that the system will crash or behave incorrectly. Efficiency is
also of primary importance because so many non-stop systems must be high-performance.
Finally, a system that is hard to use is generally not used at all; therefore, means to ease
the burden of crafting dynamic updates are critical to a system’s success. Existing general-
purpose systems lack in one or more of these areas of flexibility, robustness, efficiency, or
ease of use.

In this work, we aim to improve the state of the art in dynamic software updating,
drawing on the successes of past efforts, while overcoming many of their limitations. In
short, we aim to show that

Dynamic software updating, meaning the arbitrary modification of a program
as it runs, can be achieved in a practical manner that is flexible, robust, efficient,
and is easy to use.

To prove this assertion, we have explored the space defined by these criteria, carefully
analyzing mechanisms used in prior work, and experimenting with new mechanisms. As a
result of this research and analysis, we have built a system that arguably meets our require-
ments of flexibility, robustness, efficiency, and ease of use. To test our system’s practicality,
we built a non-trivial application—a webserver—and used our system to update it over
time. The experience was eminently useful, not only because we could demonstrate the
updating system’s practicality, but because the process of updating the webserver shed
light on areas we could (and did) improve in the updating system.

We begin in Chapter 2 by more carefully defining the evaluation criteria: flexibility, ro-
bustness, efficiency, and ease of use. We then evaluate specific past work in general-purpose
dynamic updating in light of these criteria, identifying techniques that are successful, but
pointing out areas that need more work. We outline our approach In Chapter 3 and argue
that it satisfies the evaluation criteria. The remainder of the dissertation describes our
approach in detail.

Chapter 2
Goals

We believe that a practical system for dynamic software updating should satisfy four
criteria: flexibility, robustness, efficiency, and ease of use. In this chapter, we define these
criteria in detail for our context and argue that they sufficiently measure the practicality
of an updating system. We then evaluate past approaches, highlighting what previous
systems do and do not do well, setting the stage to present our approach in Chapter 3 and
throughout the remainder of the dissertation.

2.1 Criteria of Evaluation

Let us examine the evaluation criteria more closely:

e Flexibility We must judge how effectively a system supports dynamic updates.
The more flexible a system is, the more likely that we will be able to reflect a needed
change at some point in the future. Ideally, a general-purpose updating system
should be flexible enough that any part of a running program can be updated in
any way without requiring downtime. More specifically, after arbitrarily altering the
source files of a program in creating its next version, we should be able to reflect
these changes dynamically, in the running program. The more that an updating
system strays from this ideal, the more likely that it will be impossible to reflect a
future change dynamically.

However, the programmer should retain the ability to determine when, during pro-
gram execution, an update is applied. In other words, restrictions on the timing of
the update, say to avoid race conditions while manipulating existing state, should
be imposed by the programmer, not the system. Again, the more that the system
imposes timing restrictions on an update, the more likely it will be that an update
cannot be properly applied. The system may provide means to aid the programmer
properly time the update based on programmer-provided constraints. For example,
it could delay applying an update until certain functions or modules are inactive.

¢ Robustness Many applications that are candidates for dynamic updating are mis-
ston critical: they must continuously provide correct service. Making a program
updateable should not compromise this requirement. In particular, the greater the
chance that the system could crash, lose data, perform incorrect operations, or oth-
erwise fail due to an update, the greater the risk to the application that uses it.

While proving that updates are correct is undecidable (c¢f. [Gup94]), we can improve
the robustness of both dynamic updates and the mechanisms for realizing them in a
number of tractable ways that, while not providing a full guarantee of correctness, re-
duce the possibility of error. We have identified five important robustness properties
that updating systems should seek to achieve.

Safety Malformed or otherwise incorrect updates should not cause the running sys-
tem to crash. We can guarantee as much by requiring updates to be safe.
In particular, a safe update will not perform illegal operations that lead to a
crash, such as dereferencing a null pointer, indexing an array outside its bounds,
adding an integer to a string, etc. Typically, notions of safety encompass type-
safety, which is a well-understood programming language concept. The Java
Virtual Machine (JVM) [LY96] has popularized the use of safety as a security
mechanism for loaded code. In our context of non-stop, mission critical systems,
safety is an especially powerful property since it rules out crashes, which halt
service and could result in lost transactions and/or inconsistent state.

Safety can be verified automatically. In the case of program updates, we prefer
to verify for safety before the system uses an update, say at load-time. Load-
time checking simplifies how safety violations are handled, since an update can
be easily discarded once it is known to be unsafe. When safety is ensured by
runtime checks, safety violations may go undetected for some time, making it
harder to remove the faulty update and return the system to a safe configuration.

Completeness While we cannot rigorously show that a dynamic update is correct,
we would at least like to show that it is complete, meaning that the update
addresses the changes that a new version has made to the old one. In other
words, for each change, call it §, between the old and new source code, there is
a corresponding code element of the update that addresses 4.

Well-timedness Just as important as the makeup of a dynamic update is the time
that it is applied; choosing an incorrect time may, among other things, result
in inconsistent state due to race conditions. We would like to show that the
timing of an update will not result in an error.

Simplicity Correct updates are of little use when applied with a buggy implementa-
tion. One way to reduce implementation errors is to make it simple; the simpler
the system, the easier it is to understand, and the greater the likelihood that
it is correct. We also prefer a simple updating methodology. The more compli-
cated the process of building and updating a system, the greater the chance of
error.

In a system that enforces safety, as defined above, we must be concerned about
its trusted computing base (TCB). In security terminology, the TCB is defined
as the system hardware and software that must function correctly in order to
enforce a security policy. In our context, the policy being enforced is that loaded
code is safe, and therefore the TCB consists of the code that verifies safety, as
well as the code upon which this verifier relies. To improve the likelihood that
the TCB is correct, we prefer that it be kept small and simple [SS75]. There is

10

also an added motivation in our case: the more elements of the implementation
that reside outside the TCB, the more of the implementation that is provably
safe.

Rollback-enabled While we would prefer that updates be correct before they are
applied to the on-line system, some mistakes might slip past testing and veri-
fication procedures. Therefore, we desire a means to roll back a system to its
original form upon discovering that an applied update is buggy. Systems may
support rollback for a limited window following an update. For example, re-
jecting an update during safety checking can viewed as a very small rollback
window while rolling back following a failed state transformation, say due to
a raised exception, presents a larger window. Rolling back at arbitrary times
following an update is obviously the most general.

e Efficiency Many systems that require non-stop service are high-performance, e.g.
web-servers, transaction processors, etc. Therefore, enabling a program to be up-
dateable should impact its performance as little as possible.

e Ease of use A system’s applicability is often determined by its ease of use. Many
fine tools and products have been ignored simply because they have not been easy to
use. We consider a system easy to use if it reduces the workload on the programmer,
and/or reduces the complexity of the tasks to be performed.

One way to make an updating system easy to use is to clearly separate the process
of update development from software development. For example, only after a new
version of the software is finished will patches be developed to dynamically update the
running system to the new version. This way, developers construct their software
and test it without needing to think about updates, effectively making software
construction and patch construction two modular components of the development
process. Modularity is a well-known technique for reducing complexity.

Automation can be employed to reduce programmer workload, making a system
easier to use. In fact, automatic safety-checking, as described above, is often cited
as a means to reduce both programmer workload and software complexity, since it
prevents a large class of bugs from cropping up. Other forms of automation may
be useful as well, such as means to identify changes between two versions of some
software.

We have argued that for a practical system, these criteria are necessary, but we have not
argued that, in total, these criteria are sufficient. Might there be other criteria important
for evaluating updating systems? For example, how deployable is the system—can it be
readily applied to legacy systems, and/or can it work well with other language families?
As another example, how portable is the system—can it work on a variety of architectures?
Finally, how elegant is the system? Does it have a elegant mathematical definition?
These are important criteria, but we believe they are of lesser importance. That is,
we need a flexible, robust, usable, and low-overhead system before we can worry about its
portability—portability is not central to the goal of building a useful system. However,
future work may more readily consider other goals given the foundation we establish here.

11

System Flexibility Robustness Efficiency | Ease of

what | when | Sf| C| W |Si| R use
D ‘ ok

Dynamic linking ARV NERYA Vv
DYMOS v IV VIV] 1V
Argus v VAR Vv v Vv v
Conic V Vo7 ? vV
PODUS v oY vV vV
PolyLith Vv Vv ?
OSvVC Vv Vv
Brlang J J VAR v
Dynamic ML NARYA Vv Vv
Dynamic C++ Vv NERYA Vv
Dynamic Java classes
DITools V NARY: vV
GSU Vv VARARY Vv
Dynlnst Vv Vv Vv

Flexibility timing abbreviations: Robustness property abbreviations:

D enforces dynamic constraints Sf Safety

ok no timing restrictions C Completeness

W Well-timedness
Si Simplicity
R Rollback-enabled

Table 2.1: Evaluating previous general-purpose updating systems

2.2 Evaluating Past Work

A number of researchers have designed and/or built software-based approaches to dynamic
updating, with different emphases. In this section, we examine a number of systems in light
of our criteria for practicality, identifying what they do and do not do well. As we shall
see, there are number of inherent tradeoffs in the design decisions to be made concerning
an updating system.

Table 2.1 summarizes our evaluation of past work on general-purpose dynamic up-
dating. The systems/mechanisms we consider here are the following (presented roughly
chronologically): dynamic linking (which exists for various languages), DYMOS [Lee83],
Argus [Blo83, BD93], Conic [MKS89, MK85], PODUS [FS91, SF93], PolyLith [Hof93], On-
line Software Version Change (OSVC) [GJ93, Gup94, GJB96|, Erlang [AVWW96, Hau94],
Dynamic ML [GKW97, WKG98], Dynamic C++ [HG98], Dynamic Java classes [MPGT00],
DITools [SNCO00], Guarded Software Updating (GSU) [TTA199, TTAT00], and Dyn-
Inst [BHO0]. A few other systems have been proposed (c.f. [ACR98]) but not fully explored

12

so we do not examine them here. In addition, we consider only past general-purpose ap-
proaches, not application-specific methodologies. A more detailed survey of the related
work presented here can be found in Appendix B (in §B.3). Other useful surveys are
found in Gupta [Gup94] and Segal [SF93].

For the purpose of filling in the table, we make the criteria more quantitative as follows:

e Flexibility is broken down into two parts: what changes can be effected dynamically,
and when those changes can take place during program execution. We consider a
system to have fulfilled the what part if it allows essentially arbitrary updates; that is,
no significant programming language feature is restricted from dynamic updates. We
break down when updates can take place into two parts. First, we identify whether
the system imposes no restrictions on update timing. Second, we note whether the
system provides support for enforcing dynamic timing constraints.

e Robustness is broken down into the five sub-criteria we identified: safety (‘Sf’ in the
table), completeness (C), well-timedness (W), simplicity (Si), and rollback-enabled
(R). No system can provide an automatic, provable well-timedness property (demon-
strated by Gupta et. al [Gup94] to be undecidable), so we consider a system to
support well-timedness if it provides enough support that the programmer can en-
sure well-timedness.

e We consider a system to be efficient if it works with high-performance code, and
imposes a negligible runtime cost on programs that use updating relative to programs
that do not.

e We consider a system to be easy to use if it provides means to reduce the complexity
of the updating problem. For example, the system could provide a clear separa-
tion between regular and update development, it could provide automated means of
developing patches, etc.

The user interested in the particulars of each system is referred to SB.3; we have
attempted to make the text below highlight the key aspects of each system without requir-
ing an exhaustive summary of each. Our presentation is structured around the evaluation
criteria.

2.2.1 Flexibility

Flexibility is the most important criterion with regard to software updating: the less
flexible the system, the more likely that an on-line update will not be possible. On the other
hand, higher flexibility often means reduced robustness, in terms of implementation and
update complexity, and possibly reduced safety. Some systems have favored robustness over
flexibility, and thereby chosen to limit their application domain. For example, Dynamic
ML limits flexibility in favor of completeness and ease of use. Nonetheless, for an updating
system to be practical, it must support essentially arbitrary updates. We consider the two
facets of flexibility below: what changes can be effected dynamically by the system, and
when these changes can be effected.

13

What can be changed

A few systems satisfy both aspects of the flexibility criterion. The most flexible system
is DYMOS, which permits changes to the functions, data, type definitions, and even loop
bodies of concurrent programs. Erlang, PODUS, and Dynlnst are similarly flexible, but
do not have special support for loops, and PODUS additionally does not support updating
type definitions (but this is of little consequence since loaded code is not type-checked).
Argus permits the replacement of groups of distributed, multi-threaded processes called
guardians.

In contrast, many previous systems sacrifice flexibility in favor of other criteria. Dy-
namic linking, used by a number of systems [App94, PHLI7|, nicely supports extensible
software, but is less useful for effecting arbitrary change (see §1.1.3). On the other hand,
basic implementations are reasonably simple, and because the program bindings are stable,
it is easy to see that a dynamic change is correct. Three approaches—OSVC, PolyLith,
and GSU—use state transfer as their underlying updating technology, and therefore suffer
from the limitations of that technology (see §1.1.2). On the other hand, these systems fit
well in a distributed context, since state can be transferred to programs on other machines.

Other systems exercise other tradeoffs. Conic, a programming environment for dis-
tributed systems, only considers changes at the process-level, allowing the adding, moving,
or removing of processes and per-process communication channels. Changes to a process’s
code are not supported (and therefore state is not preserved), but understanding the ef-
fects of an update becomes much simpler. Dynamic ML only permits updating modules
that export abstract types, and module signatures may not change in arbitrary ways (e.g.
functions and data cannot change type). This restriction allows for an elegant use of
copying garbage collection to change the implementation of the abstract type. DITools
focuses on legacy software customization, and not software evolution, and therefore does
not consider a number of useful changes, like dynamically changing type definitions. Dy-
namic Java classes does not permit user-directed state transformation (the system fills in
default values for the new state), nor does it permit arbitrary changes to class signatures.
Both restrictions are used to ensure that classes are updated correctly. GSU restricts new
code to work with existing state without modification, and requires the new code to have
roughly the same external behavior (in terms of the messages it sends) as the old code;
these restrictions permit old and new versions of the code to run concurrently, permitting
a rollback to the old code if errors are detected (see below).

Nonetheless, while the restrictions made by these systems have added value in other
areas, they have made the system less practical in terms of supporting a wide array of
dynamic changes.

When changes can take place

While most systems permit changes to take place at any time during program execution,
PODUS, OSVC, Dynamic ML, and Dynamic Java classes forbid updates to active code
(that is, code that has an activation record on the stack). This is typically to ensure that
only one version of a module/class may be present in the system at a time. Similarly, Conic
requires that updates occur only to modules that are quiescent, meaning modules that are
not performing any processing (i.e. they are waiting to receive transactions). In all of

14

these cases, the intent is to increase update robustness by preventing ill-timed updates.
Unfortunately, while some ill-timed updates are prevented, some perfectly legal updates
are ruled out as well.

In cases when updates to active code are allowed, most systems transition from old
to new code at well-defined points, such as at procedure calls (for Erlang, DYMOS, and
DITools), or during object creation (Dynamic C++ classes). DynlInst updates take place
immediately, since the old code is modified in place to jump to trampolines to mitigate
entry and exit to new code snippets.

Three systems provide system-enforcement of programmer-determined timing con-
straints. In Argus, like Conic, modules to be updated must be quiescent, but here qui-
escence is defined by the programmer as part of the module definition. Two systems,
DYMOS and PODUS, support delaying updates until certain timing constraints are met.
For example, the user could specify that the update should be delayed until some number
of modules or procedures are inactive. In these cases, constraints are truly dynamic, while
in Argus they are statically defined as part of the module. While they provide an obvious
increase in flexibility, the use of these mechanisms is largely unproven. T'wo possible rea-
sons are that determining the appropriate constraints is undecidable in general [GJB96],
and there is little experience with realistic applications that use these systems.

2.2.2 Robustness

Without some assurances of robustness an updating system is of little practical use, even
if it is very flexible, because the integrity of the non-stop system is in question. This
tradeoff between flexibility and robustness exists in other contexts as well. For example,
strongly-typed languages like Java lose some of the expressiveness of C (being unable to do
pointer arithmetic, manual memory management, etc.) to ensure that programs will never
crash; however, Java is still very flexible, if not the most flexible it could be. In addition,
bolstering the other facets of robustness an increase the complexity of the implementation.
In the end, a system should strive to provide a high level of robustness while still preserving
a reasonably high level of flexibility.

Existing systems favor different sides of the flexibility /robustness tradeoff. Dynamic
ML favors robustness in supporting a type-safe language (SML), guaranteeing complete
patches, and providing rollback. However, supporting these features has led to a complex
implementation. On the other hand, Dynlnst provides a high-degree of flexibility, but
uses an unsafe language, relies on a complicated implementation, and has little support
to assure patches are correct. Dynlnst focuses less on robustness because it is targeted
at instrumenting existing programs, rather than modifying them arbitrarily for the long
term, simplifying typical modifications. Most other systems fall somewhere in between.
We consider each robustness property individually below.

Safety

Providing safety is one of the most effective ways of ensuring a high degree of robustness. In
all cases, ‘safe’ programs will not crash,' which is a boon for non-stop systems. Anecdotally,

!Safe programs will not crash barring implementation bugs, which is why a small TCB is so important.

15

statically-typed languages like SML catch many bugs during the type-checking phase.
However, as we have said, with safety comes a slight decrease in flexibility, making safe
languages inappropriate for all contexts. That said, a number of previous approaches use
safe languages like Java and/or SML, while the majority of systems do not, being based
on C or C++.

Of the safe languages used, all but Erlang are statically-typed, meaning that a dynamic
update’s safety can be ascertained at link-time. FKErlang is dynamically typed, meaning
that type errors may arise at runtime, making it potentially difficult for the system to
recover from a faulty update since the error could arise long after the update is applied.
A number of soft-type systems have been developed for Erlang, somewhat mitigating this
problem [MW97, AA98].

Completeness

A system is complete if a programmer may be assured that an update addresses the changes
resulting from a new version’s code. Completeness is essentially a syntactic property; if a
definition changes between the old and the new version, the update should contain code
that deals with the change.

Most past systems have been more concerned with enabling dynamic updating mecha-
nisms than with the form and content of the updates themselves. As such, little attention
has been paid to completeness, which is more closely tied to the update and not the mech-
anism used to realize it. The exception is Dynamic ML, which provides a simple updating
interface. When a module is replaced, the implementation of one or more of its abstract
types may change. During the update, the existing module code is replaced by the new
code, and existing instances of abstract type are translated to the new implementation by
some user-provided code. When the user writes the new module version, this new code
must be provided, ensuring the update to the module is complete. In this case, the narrow
scope of what may be updated localizes the notion of completeness. In the general case,
completeness is a global property, essentially requiring automated support to prove its
presence.

Well-Timedness

Most systems make it possible to ensure update well-timedness, though none can do it
without programmer assistance.? Only Dynamic ML and Dynamic Java classes provide
inadequate support. In these systems, a module update may occur at any time other than
when the module is active; while often necessary, module inactivity is not sufficient to
guard against race conditions. For example, another module could be manipulating the
updated module’s state when the update occurs. This problem could be fixed without
extensive changes to these systems.

2Some work was presented in [Gup94] to prove well-timedness for imperative programs without proce-
dures, under certain circumstances.

16

Simplicity

A simple implementation is more likely to be correct, and is therefore more likely to not
introduce fatal errors. A simple implementation also tends to be more portable. Unfortu-
nately, simplicity is the quality where the flexibility /robustness tradeoff most comes into
play. In particular, with more flexibility comes a larger, and potentially more complicated
implementation.

Of all of the systems that have simple implementations, only Erlang is both simple
([Hau94] describes a C-based implementation) and sufficiently flexible. Most other sys-
tems provide flexibility via a complex group of mechanisms. For example, to enforce
system-imposed (or programmer-specified) timing constraints at runtime at least requires
support for examining the program stack for return addresses pointing to the relevant
module [Lee83, FS91, MPGT00, GKW97], and potentially a means of delaying the update
until no such addresses are found [Lee83, FS91]. In the presence of multi-threading, all
thread stacks must be traced, and determining activeness may require locking on proce-
dure entry and exit [Lee83]. PODUS uses segmented virtual memory, requiring potentially
complex OS support if implemented directly (it can also be simulated in user-space), and
Argus leverages language constructs for persistent transactions and recovery, which are
difficult to implement.

Systems that enforce type safety require verification software that is part of a poten-
tially large trusted computing base. In particular, a trusted compiler is employed by the
updating systems of Argus, DYMOS, Conic, Dynamic ML, and the dynamic linkers of
OCaml and Haskell. That is, source language safety is checked during compilation, but
target language safety is not assured, in effect trusting the compiler not to introduce vio-
lations. Argus, OCaml, and Conic go a bit further than this, ensuring that target code is
link-safe; that is, the interface advertised by the target code (but not confirmed) is verified
to be consistent with the context of the running program when it is linked. Java-based sys-
tems do verify safety in the target code, and thus the Java-to-JVM compiler (i.e. javac)
can be untrusted. However, since the target code is virtual machine bytecode, we must
trust the JVM interpreter, or else trust a just-in-time (JIT) compiler that translates JVM
code to machine code following verification.

Rollback-enabled

All of the other robustness properties look to prevent errors before they arise; conversely,
rollback can be used to reverse the damage caused by a faulty update. Most past sys-
tems have focused on enabling updateable programs, with rollback being considered less
important future work.

Two systems provide short-term rollback. Argus provides rollback not in the updating
system per se, but in the transaction facility leveraged by the updating system. Parts of
an update can be made into a transaction, which can be rolled back on failure. Dynamic
ML provides a similar kind of rollback. After the new code for an abstract type has been
loaded, the existing instances of that type must be converted to match the definition of the
new code. If during this translation process an exception is raised, then the entire update
is aborted and the system is rolled back to the state just before the update occurred.
Dynamic ML leverages copying garbage collection as a mechanism to enable this.

17

One system, GSU, has proposed a more general form of error detection and rollback.
Here, the updated code runs in a separate process concurrently with the existing code, with
two changes: the messages sent by the new code are checked for accuracy with programmer-
provided acceptance tests, while messages that would have been sent by the old version
are logged. If an erroneous message is detected, the old version is restored. So that this
switch over is semantically consistent, GSU employs checkpointing technology [P1a97] to
checkpoint the state of the old version when its is known to be consistent, so that the
system can roll back to that state on a failure. Checkpointing is also used to enable the
new version to begin with the state of the old version. Unfortunately, enabling GSU error
detection and recovery technology seems to limit the flexibility of the underlying updating
system (see B.3.13).

2.2.3 Efficiency

Most systems appear to be reasonably efficient (although few demonstrate as much exper-
imentally), adding either no additional runtime overhead, or only a modest one (e.g. an
added indirection per function call). The few exceptional cases have sacrificed some level
of efficiency to gain a more elegant or more flexible updating model.

e DYMOS introduces high per-function call overhead due to extensive locking se-
quences before and following each call. This support owes to its need to track the
active procedures and modules in multiple threads.

e PODUS similarly has a potentially high per-procedure call overhead since it uses sys-
tem calls into the OS to leverage segmented virtual memory (simulating segmented
virtual memory in user-space reduces this cost at the loss of some flexibility). Seg-
mented virtual memory allows multiple versions of code to coexist, allowing for more
relaxed transition semantics following update.

e Dynamic Java classes lose significant performance because the majority of the sup-
port for dynamic updating is built into a single, bytecode-interpreted JVM to simplify
the implementation.

e Dynlnst loses performance due to its use of trampolines; each change to a function
results in a branch to some trampoline code that saves (and restores) machine state
before jumping to (and returning from) the new code.

2.2.4 Ease of Use

Few systems have focused on usability, instead favoring flexibility and robustness. As a
result, most systems lack a clear separation of update development versus normal develop-
ment, meaning that code relating to updates becomes intermixed with normal development
code, making development and maintenance more difficult and less modular. There has
also been little focus on the use of automation to reduce update complexity.

Two systems that nicely separate update code from normal code are OSVC and Dy-
namic ML. In OSVC, the programmer writes the new version of the program from the old

18

without concern for patches. After development and testing are finished, a state trans-
former function is written to transform the running program’s state into a form usable
by the new version. In Dynamic ML, similar functions are defined, one per abstract type,
for each module that has changed. Dynamic Java classes is a degenerate form of Dynamic
ML, whereby the per-class transformation code is generated automatically (and somewhat
inflexibly). Conic also separates its reconfiguration directions from normal code.

Some systems provide automated support to reduce the complexity of the updating
process. Both PODUS and DYMOS provide support for enforcing runtime timing con-
straints. However, this support is only marginally helpful, as determining the correct con-
straints can be quite complicated. PODUS does automatically enforce certain syntactic
constraints. Argus’s use of transactions greatly simplifies keeping runtime state consistent
during an update. On the other hand, the syntax and semantics of the Argus language
can be unintuitive.

2.2.5 Summary

Maximizing the benefit of an updating system means trading off the various evaluation
criteria. The mechanisms and approaches explored in past work are extensive, and each
system has focused on certain areas in the design space, in some cases favoring robustness
over flexibility or performance, or perhaps the reverse. However, no prior system has
effectively balanced the tradeoffs to become truly practical. In the next section, we describe
how by borrowing mechanisms from these systems, and placing more of an emphasis on
simplicity and ease of use, we can arrive a more practical system.

19

Chapter 3

Approach

Previous systems each have their strengths in the areas of flexibility, robustness, low over-
head, and ease of use, but no system is strong in all areas. In this chapter we outline our
approach and argue that it finds a ‘sweet spot’ in meeting the evaluation criteria: it pro-
vides sufficient flexibility and robustness, imposes a low overhead, and is easy to use. We
begin by outlining the strategy we have taken in designing and building our general-purpose
updating system, describing the major elements of our system in the process. Following
this discussion, we evaluate our system and show that it meets the four evaluation criteria.

3.1 Strategy

In this section we describe the strategy we took in developing our dynamic software updat-
ing system. We start by considering the core technology we employ, and then describe how
we build on it to ultimately support general-purpose dynamic updating. The presentation
of our strategy mirrors the structure of the remainder of the document, so this section
serves as a technical overview and outline; where applicable we indicate which chapters
develop each point.

1. Build on dynamic linking. There are three obvious mechanisms we could choose as
the foundation of our approach: state capture and restore (as used by OSVC and PolyLith),
code insertion by trampolining (as in Dynlnst), or dynamic linking. State capture has
known flexibility limitations (see §1.1.2 and §2.2.1). Trampolining has a number of dis-
advantages, including implementation complexity, execution-time overhead, and platform
dependence. Type-safe dynamic linking already meets quite a number of the evaluation
criteria, as shown in Table 2.1, but by itself lacks sufficient flexibility (see §1.1.3). Our
strategy is to start with dynamic linking and then build the needed flexibility on top of it,
while keeping a simple implementation and a small trusted computing base. In essence, as
alluded to in the introduction, we develop an automated way that converts every program
module into a plug-in.

2. Use verifiable native code. Existing type-safe dynamic linking implementations
have one of two drawbacks. In many cases, the trusted computing base includes a trusted
compiler, since only source language safety is verified, and not target language safety.
Systems like Java do verify target language safety, but at the cost of either using a slow,
byte-code interpreter, or by including a large JIT compiler in the TCB. Verifiable native

20

code (VNC) systems, like Proof-Carrying Code (PCC) [Nec97] and Typed Assembly Lan-
guage (TAL) [MWCG99], mitigate these problems by permitting native code to be verified
for safety. This approach avoids both the performance cost of byte-code interpretation and
the security cost of having a compiler in the TCB.

For our implementation, we chose to use Typed Assembly Language. TAL defines a
framework in which native machine code is coupled with annotations so that it is provably
safe. In TAL, ‘safe’ code is many things: in addition to being type-safe, it is memory-safe
(i.e. no pointer forging), control-flow safe (i.e. no jumping to arbitrary memory locations),
and stack-safe (i.e. no modifying of non-local stack frames). TAL has been implemented
for the Intel TA32 instruction set; this implementation, called TALx86 [MCG™99], includes
a TAL verifier and a prototype compiler from a safe, C-like language called Popcorn to
TAL. Chapter 4 describes TAL and Popcorn in more detail.

3. Implement dynamic linking for VNC (TAL). Existing VNC systems do not
support dynamic linking. As a result, we must first implement dynamic linking for VNC.
This implementation should be as simple as possible, have a small TCB, impose a low
overhead on linked code, and be flexible enough that we can build the necessary updating
mechanisms on top of it.

Roughly, dynamic linking requires three operations: loading the new code into the
running program, linking that code with the existing code, and managing the symbols of
the code to be used in future dynamic linkages. To maximize flexibility but minimize
complexity and the need for trust, we divided our dynamic linking implementation into
trusted and untrusted components, such that the trusted part takes care of loading, while
the untrusted part takes care of linking and symbol management.

The trusted part, called TAL/Load, consists of extensions to the TAL language and
runtime system, including a special load primitive that loads a module and verifies it for
safety, and runtime type representations, needed to build a type-safe symbol table. Our
implementation of TAL /Load and its theoretical underpinnings are described in Chapter 5.
The untrusted part builds upon TAL/Load to provide compiler and library support for
dynamically linking Popcorn modules. We provide an API for Popcorn programs called
DLpop, which is similar to DLopen [Lin95], a common dynamic linking APT for Unix-based
C programs. The implementation of DLpop is described in Chapter 6. Because DLpop
consists of TAL code, or code that generates TAL code, it can be verified for safety,
improving robustness. The components of our approach are summarized in Figure 3.1.

4. Define a notion of dynamic patch. Given an implementation of dynamic linking
for TAL, we need to consider how to build on it to enable dynamic updating. The first
step is to define the unit of dynamic update. In our case, an update consists of one or
more dynamic patches, defined in the first half of Chapter 7 (§7.1). A dynamic patch to
an existing module can be described as (1) the new version of the module, and (2) the
code and data needed to support updating that module dynamically. An important part
of the update code is a state transformer function, like that used in OSVC and Dynamic
ML, that computes the new module’s starting state from that of the old module.
Because our notion of dynamic patch cleanly separates the new code from the update
support code, normal development can take place independently of patch development.

21

Existing Structure Our additions

l
|
runtime —» '0ad & cast primitives
trusted System |
verifier |+ » typerepresentations
|
|
libraries |—= !inking & updating library
|
ntrusted) ' loadable file compilation
compiler —— updateable file compilation
[static linking alterations
|

Figure 3.1: The trusted and untrusted components of our implementation in TAL.

Once the appropriate changes have been made to the program, patches can be written by
including the new module code and any additional code needed to transform the state.
The patch is then compiled into a single TAL module, to be applied by dynamically linking
it into the running program.

5. Enable running programs to be dynamically patchable. Once a patch has been
dynamically linked, its state transformer function is invoked to transform the existing state,
and the running program is ‘fixed up’ to use the new code. Our approach is that following
linking and state transformation, we relink the existing program modules to use the new
code. If old code is running at the time of update (or is referenced on the stack), it will
continue to be used until control exits from it; new calls into the updated module will go
into the new code. This is the same approach as taken by Erlang, DYMOS, and others.
Care is taken to ensure that code is made unreachable as soon as it is no longer needed;
this includes removing references to old code from its dynamic patch and from the dynamic
symbol table following linking. This way, once the old module is no longer active, it can
be safely garbage-collected.

The benefit of this approach is that it reuses functionality already present to support
dynamic linking. Doing so keeps the implementation simple, requires no additions to the
TCB, and introduces no additional overhead. Furthermore, by allowing running code to
be updated, the system places no limits on the time that a patch can be applied. How we
enable dynamic patches is described in detail in the second half of Chapter 7 (§7.2).

6. Ensure updates are type-correct and well-formed. The relinking process must
be type-correct. In particular, if an updated module changes the type of any of its func-
tions or data, then the system must ensure that doing so does not violate type-safety. The
simplest way to do this is to simultaneously update other modules that refer to these func-
tions or data. Alternatively, the programmer can define stub functions having the old type
to be interposed between old callers and new functions. Stub functions can also be useful
for implementing transitional computation, such as incremental state transformation.

We must also properly handle any type definitions that have changed. To do this, we
identify changed type definitions during patch creation and transparently rename each type

22

name at compile-time, rather than deal with changes during linking or updating. While
the programmer must manually translate old type instances to new ones in the state
transformer and/or stub functions, this approach avoids the implementation complexity
and reduced flexibility of systems like Dynamic ML and Dynamic Java classes.

Finally, we ensure that an update will not damage the system during state transforma-
tion by supporting rollback in the style of Dynamic ML. That is, if any state transformation
function raises an exception, the entire state of the system is rolled back to what it was
before the update.

7. Generate patches (mostly) automatically. Given a program that is dynamically
patchable, we need to consider how we will generate patches for it. Many past approaches
have required the programmer to generate patches entirely by hand, notably the state
transformer and stub functions. To greatly reduce this burden, we developed a tool to
generate patches mostly automatically; it is described in the first half of Chapter 8 (§8.1).
The tool identifies all changes to a program from one version to another and generates
a patch. Changes are addressed either by generating some patch code, or by inserting a
placeholder when generating code is not possible, so that the programmer may address the
change. The tool ensures that patches are complete and makes the system easier to use.

8. Ensure patches are well-timed. Given a set of well-formed patches, we need
to determine an appropriate time to apply them to the running program. Rather than
support mechanisms to enforce user-provided timing constraints at runtime, we instead
rely on the programmer to construct the program to perform its own updating, ensuring
in advance that updates will be well-timed. As a result, we avoid the implementation
complexity imposed by runtime enforcement mechanisms, but lose some flexibility, since
the programmer must code the system to anticipate updating. However, in our experience
this added burden is minimal, and the benefit of enforcing dynamic constraints is largely
unproven. Issues of timing are explained in Chapter 8 (§8.2).

9. Validate the system using a realistic application. A problem of many past
systems is that they failed to validate their abstractions on realistic programs. For example,
PolyLith, PODUS, Dynamic Java classes, and others only considered toy programs, while
Dynamic ML lacks an implementation entirely.

To validate our approach, we decided to build a reasonably complete webserver in-
crementally, starting with a basic implementation and adding sizeable features over time.
After deploying the first version of the system publicly, we updated it four times with
significant new functionality. This process was critical in informing our design, especially
in the development of our patch generator and compiler. We also used the webserver to
measure the overhead that updateability imposes on a running program.

3.1.1 Limitations

The approach that we have described has a number of limitations:

1. Our approach is necessarily tied to imperative, C-like languages, since its implemen-
tation language, Popcorn, is of this sort. On the other hand, this limitation is also

23

a feature, since a low-level, imperative languages like C can serve as the target for
other language styles. In particular, we have begun to explore how our approach
would apply to functional and object-oriented languages; we present our progress on
this topic in Chapter 11.

2. We cannot seamlessly support some of the more advanced language features of Pop-
corn. In particular, we do not support updating exceptions and exception construc-
tors, and have not implemented support for updating function pointers and abstract
types. However, we know at least one way to update function pointers and abstract
types, and sketch how to do so in Chapter 11. We also do not support updating
long-running loops (as DYMOS does).

3. We only have experience with single-threaded programs, owing to the fact that TAL
and Popcorn currently do not support multi-threaded programming. However, our
approach will work just as well in multi-threaded programs, though ensuring well-
timedness becomes more difficult.

4. We do not consider distributed programs. The problem of dynamically updating
multiple, distributed processes is necessarily more complex, since it subsumes the
problem we consider of updating a single process. However, we feel that our approach
fits well into previous approaches to updating distributed systems, like Conic and
PolyLith, that require single-process updateability but do not implement it well.

5. We only briefly consider the problem of updating programs for which not all of the
source code is available. Being able to support this would be useful for certain active
network implementations, which allow multiple parties to load code into network
routers. As a result, each user may have only a partial view of the entire system,
complicating the process of updating. We consider this issue somewhat in Chapter 11.

6. Finally, we do not rigorously consider the problem of proving that an update is well-
timed. Instead, we provide enough support and flexibility that users can construct
applications and updates to be valid; this is no better (and no worse) than previous
systems. This limitation is arguably the most important one we have mentioned;
providing a means for proving updates are well-timed, or even providing a framework
to establish a reasonable well-timedness property, is important future work.

3.2 Evaluating Our Approach

In designing our system, we have focused on retaining a high level of flexibility and per-
formance while bolstering the system’s robustness and ease of use.

e Our approach is flexible enough to update all of the major features of Popcorn
without any system-imposed timing restrictions.

e The system is made robust by type-safe code (Popcorn and TAL), a simple imple-
mentation (dynamic linking and code relinking) with a small trusted computing base
(due to TAL and our approach to dynamic linking), has complete patch files, and
imposes no unreasonable timing restrictions.

24

e Our approach is only slightly less efficient than statically linked code; overheads result

from load-time verification and an extra indirection imposed by dynamic linking.

e Developing updateable software is simplified by our clean separation of software and

patch development, and by our automated patch generator.

Compared to previous systems, our system is nearly as flexible and efficient, but more
robust and easy to use. Our relative decrease in flexibility and efficiency is quite minimal
overall, and results in significantly larger gains in robustness and ease of use.

3.2.1 Contributions

In proving our thesis, we make the following contributions:

1.

Our primary contribution is to show that one can build a practical, general-purpose
updating system that is flexible, robust, low overhead, and easy to use. No prior ap-
proach is as practical. Because we prove this point by construction, a corresponding
contribution is an updating system implementation that meets the desired criteria.

We have developed the first complete framework for safe dynamic linking of (veri-
fiable) native code. The system that we have built is the first to enable dynamic
linking of native code in a way that is both safe and flexible enough to support a
variety of dynamic linking (and updating) strategies.

. We have defined and implemented a notion of dynamic patch that cleanly separates

the concerns of program and patch development. This simplifies the development
process and makes program code more maintainable, since the program does not
become ‘polluted’ with code relating to dynamic patching.

. We have employed a novel approach to dealing with changes to type definitions by

renaming them. This approach works well in practice, and avoids the implementation
complexity of true type replacement, as employed in systems like Dynamic ML and
Dynamic Java classes.

. We have developed a tool that mostly automatically generates patches, given two

versions of a program. This tool greatly simplifies the process of developing dynamic
updates and ensures that updates are complete.

We show that VNC technology is flexible enough to support dynamically updateable
programs. The use of VNC increases the robustness of both the running program
and its dynamic patches.

We have built a sizeable updateable application: an updateable webserver. As far
as we know, ours is the largest application described in the general-purpose dynamic
updating literature to be updated in non-trivial ways over a lengthy course of time.

. We show by direct measurement that dynamic updateability can impose a low over-

head. Ours is one of the few systems to have documented performance data.

25

3.3 Roadmap

The remainder of this document more fully describes the approach outlined in this chapter,
supporting the arguments presented here. Our presentation mirrors the description of the
system in §3.1. Following some background in Chapter 4, the next two chapters describe
our approach to adding dynamic linking to TAL. Chapter 5 presents the trusted component
of our implementation, called TAL/Load, while Chapter 6 describes the implementation of
a safe dynamic linking API built on TAL/Load, based on the standard, C-based approach
for Unix systems.

The next two chapters describe how we build on dynamic linking to support dynamic
updating. In Chapter 7, we describe the how we extend the untrusted dynamic linking
mechanisms to support updating. In Chapter 8, we describe the process of building up-
dateable systems using our approach, considering issues of timing and patch generation. As
a case study, in Chapter 9, we describe the implementation of an updateable webserver. In
Chapter 10, we analyze the performance of dynamic linking and dynamic updating, both
component costs and application performance. To measure of application performance im-
pact, we compare the throughput measured for updateable and non-updateable versions
of the webserver. Chapter 11 considers future work, and we conclude in Chapter 12.

26

Chapter 4

Background

In this chapter, we provide some background on Typed Assembly Language and Popcorn,
which should help the reader understand the code examples in the rest of the document.
The reader not interested in the code examples, but primarily the high-level ideas, can
safely skip this chapter, or refer back to it as needed.

4.1 TAL

A concise description of TAL can be found on the TAL home page [TAL99]:

Typed Assembly Language (TAL) extends traditional untyped assembly lan-
guages with typing annotations, memory management primitives, and a sound
set of typing rules. These typing rules guarantee the memory safety, control
flow safety, and type safety of TAL programs. Moreover, the typing constructs
are expressive enough to encode most source language programming features
including records and structures, arrays, higher-order and polymorphic func-
tions, exceptions, abstract data types, subtyping, and modules. Just as impor-
tantly, TAL is flexible enough to admit many low-level compiler optimizations.
Consequently, TAL is an ideal target platform for type-directed compilers that
want to produce verifiably safe code for use in secure mobile code applications
or extensible operating system kernels. We have implemented a variant of TAL
for Intel’s IA32 architecture called TALx86, and have written a compiler for a
safe C-like language called Popcorn to TALx86.

While we could present more detail concerning the features, syntax, and semantics of
TAL, doing so would not aid the reader’s understanding of this work. Instead, we refer the
interested reader to the introductory TAL theory paper [MWCG99]. We will, however,
present some relevant information concerning the TALx86 implementation.

The implementation includes a number of tools, including a TAL assembler and linker,
called talc, and two Popcorn compilers. In addition to performing assembly and link-
ing, talc wverifies TAL files for safety, and verifies that the linking process is safe (the
theoretical details of link-checking can be found in [GM99]). The two Popcorn compilers
consist of a simple, bootstrap compiler, and more sophisticated, optimizing compiler. The
bootstrap compiler is written in Objective Caml (OCaml) [Ler00], a descendant of the
functional language ML. This compiler is largely unoptimized, in particular lacking a reg-
ister allocator, and so it uses the stack heavily. A newer, more sophisticated version of the

27

compiler is written in Popcorn itself. This version implements register allocation as well
as a number of traditional optimizations. Our implementation uses the OCaml version of
the compiler, essentially because it was easier to modify, although efforts are underway
to add the necessary features to the newer compiler as well. An excellent introduction
(though somewhat dated) to the TALx86 implementation, particularly in the way Popcorn
is compiled to TALx86, can be found in [MCG™99].

4.2 Popcorn

This section describes the essential aspects of the Popcorn language. Sections 4.2.1, 4.2.2,
and 4.2.4 are taken from [MCG™99]. Section 4.2.5 is taken largely from the Popcorn
language manual; both texts required minor alterations to reflect the current implemen-
tation.! Section 4.2.6 describes features we added to Popcorn to support the dynamic
linking source-to-source translation described in Chapter 6.

The Popcorn language purposely looks like C, and includes some standard enhancements
such as more flexible variable declarations and a C+--like namespace mechanism. Unsafe
features, such as pointer arithmetic, the generic address operator, and pointer casts, are
missing. Compiling these features safely would impose a significant performance penalty on
all Popcorn code. Popcorn does have several advanced features not in C such as exceptions
and parametric polymorphism.

A program in Popcorn is constructed from one or more files (typically having suffix
.pop), each containing a number of top-level definitions, including function, data, and type
definitions. We consider each Popcorn file as a separate module, where all modules share
a global namespace. The Popcorn compiler uses the C preprocessor, so Popcorn programs
can use #ifdef’s, #include, etc. Program execution begins in the pop_main function,
which is analogous to C’s main.

As a quick example, the following is the ‘hello world’ program written in Popcorn:

#include "core.h"
void pop_main() {
printf ("Hello World\n");

}

The included file core.h contains frequently used routines, including file I/O. The printf
‘function’ is not actually a function, but special syntax that is expanded by the compiler
into a series of calls to functions in core.h. Argument processing from the command-line
is handled by a separate library, as opposed to using argc and argv, as in C.

4.2.1 Control Flow

The basic control constructs of Popcorn, such as if, while, for, do, break, and continue,
are identical to those in C except that test expressions must have type bool (the result
type of relational and logical operators is bool).

Thanks to the TAL team for providing this text and the permission to use it: Greg Morrisett, Karl
Crary, Neal Glew, Dan Grossman, Richard Samuels, Frederick Smith, David Walker, Stephanie Weirich,
and Steve Zdancewic.

28

Popcorn’s switch construct differs from C in that execution never “falls through”
cases. Furthermore, a default case is required unless the other cases are exhaustive. The
argument of a switch test expression can be an int, char, union, or exception. For
example, we could find the first occurrence of the character >a’ in an array:

int i = 0, answer;
while (true)
switch arr[i] {
case ’a’: answer = i;
break; // break from while
default: i++;

}

Array subscripts are bounds-checked at run time; the above example will throw an excep-
tion ArrayBounds if arr does not contain an ’a’.

Exceptions may have different types and exception handlers may switch on the name
of an exception, as in Java. However, exception names are not hierarchical.

4.2.2 Data

Currently, the simple types of Popcorn are bool, char, short, int, string, float and
unsigned variants of the numeric types. Unlike C, strings do not require a null-terminator.
Arrays (and strings) carry their size to support bounds-checks. A special size construct
retrieves the size of an array or string.

Popcorn also has tuples which are useful for encoding anonymous structures and mul-
tiple return values. The new construct creates a new tuple (as well as new struct and
union values). For example, the following code performs component-wise doubling of a
pair of ints:

new (3, 4);
new (x.1+x.1, x.2+x.2);

*(int,int) x
*(int,int) dbl

Popcorn has two kinds of structure definitions: struct and ?struct (we will refer to
these collectively as struct definitions from here on). They resemble struct * in C. The
difference between struct and ?struct is that values of types defined with struct cannot
be null, which is a primitive construct in the language. Values of types defined with
?struct are checked for null on field access; failure results in a NullPointer exception.
Note that as in C, field order matters. That is, struct s { int a; float b; } is not
equivalent to struct s { float b; int a; }; these constitute two different types.

Unions in Popcorn are more like ML datatypes than C unions. Each variant consists
of a tag and an associated type (possibly void). For example,

union tree
{void Leaf; int Numleaf; *(tree,tree)Node};

Any value of a union type is in a particular variant, as determined by its tag, and may
not be treated otherwise. We use switch to determine the variant of an expression and
bind the corresponding value to a variable. Continuing our example, we can write:

29

int sum(tree e) {
switch e {
case Leaf: return O;
case Numleaf (x): return x;
case Node(x): return sum(x.1)+sum(x.2);

}
}

Notice that in declaring a value of union type, we do not prepend the union keyword (we
say tree e as opposed to union tree e); the same is true for struct value declarations.
In addition, unlike C, a type declaration may only be made once; to use that declaration in
other files requires prepending the declaration with extern, as is typically done for data.
This feature is important for abstract types, described below.

4.2.3 Functions

Popcorn functions are essentially the same as C functions, with some syntactic differences.
First, array and function pointer modifiers for a function’s return type follow the argument
list; a function f that takes no arguments and returns an integer array has type int £()
[(as opposed to int[] £()), and a function f that takes no arguments and returns
a function from ints to ints has type int £() (int). Second, function pointers have
the same syntax as regular function prototypes, i.e. the C declaration int (*f) (int) is
simply int f(int) in Popcorn. To avoid ambiguity, function pointers may not be declared
as globals.? For example, the following code is not allowed:

int g(int x) { return x+1; }
int f£(int) = g; // error

To get around this restriction, global function pointers can be encapsulated in a struct
or tuple; function pointers as local declarations are not problematic.

4.2.4 Parametric Polymorphism

Popcorn functions, struct, and union declarations may all be parameterized over types.
For example, we can define lists as:

?struct <’a>list {’a hd; <’a>list tl;}

To declare that a variable x holds a list of ints, we instantiate the type parameter:
<int>list x. Explicit type instantiation on expressions is not necessary; for example,
new list(3,null) has type <int>list. Having polymorphic functions means we can
write a length function that works on any type of list. Polymorphism is particularly useful
with function pointers. For example, we can write a map function:

2Otherwise, it would be unclear to the compiler whether the function £ in the declaration extern int
£ () were a function or a function pointer, which have different representations

30

<’b>list map<’a,’b>(’b £(’a), <’a>list 1) {
if (1 == null) return null;
return new list(£(1.hd), map(f, 1.tl));

}

A call to this function could look like:

<int>1list x;
<string>list y = map(int_to_string, x);

4.2.5 Type Abstraction

Popcorn supports type abstraction in two ways: with the qualifier abstract, and with
a form of existential types [MP88], referred to in Popcorn as abstype’s. Prepending a
struct or union declaration with the abstract keyword will hide its implementation
from external client code. For example, to make an abstract lists implementation, we do:

abstract ?struct <’a>list {’a hd; <’a>list tl;}
To use this list, clients define a reference to this 1ist type without its implementation, as:
extern list?<’a>;

The ? and type parameter list <’a> are used only if needed (they should be omitted if the
type cannot be null and/or is not polymorphic). Abstraction with abstract is enforced
by the TAL module system, and follows ML-style module systems’ notion of opaque types
(e.g., see [HL94, Ler94)).

The second way of defining abstract types is via a more ‘first-class’ mechanism called
abstype’s. Since abstype’s are an important part of our dynamic linking implementation,
we include a complete tutorial below, taken (with slight formatting changes) from the
Popcorn manual that comes with the TALx86 distribution.

Existential Types (abstype’s)

Data declared with the abstype keyword is a form of first-class abstract data built on
existential types [MP88], which are similar in many respects to a very primitive form of
object type. abstype’s are particularly useful when one wants to manipulate heterogeneous
data structures. Like a struct or union, an abstype can be polymorphic. Unlike structs
or unions, an abstype can abstract or hide certain types as well. The typical use of
an abstype is when we want to export some but not all information about a type. For
instance, when representing objects, we may want to hide the types of the instance variables
but expose the types of the methods. Furthermore, the methods should take the instance
variables as extra arguments. As another example, a closure may be represented by an
abstract environment and a function which, when given the environment and an argument,
produces a result.

Like structs and unions, abstype values are created by using new. To manipulate an
abstype value, we must use the with construct to open up the abstracted type in some
scope.

31

As a simple example, suppose we have two different representations for two-dimensional
points, polar and cartesian, with appropriate operations defined on them:

extern struct polar {int mag; int angle;}
extern polar add_polar(polar x, polar y);
extern polar sub_polar(polar x, polar y);
extern polar mul_polar(polar x, polar y);

extern struct cartesian {int xcoord; int ycoord;}

extern cartesian add_cart(cartesian x, cartesian y);
extern cartesian sub_cart(cartesian x, cartesian y);
extern cartesian mul_cart(cartesian x, cartesian y);

Unfortunately, Popcorn does not allow one to mix polar and cartesian values directly, for
example by mixing them in a list. abstype’s allow us to abstract the particular represen-
tation of a type (in this case, whether a point is polar or cartesian) and package up the
operations on values of those types. For example, we might define a generic point object
as follows:3

struct <a>point_rep { a data;
a add_point(a,a);
a sub_point(a,a);
a mul_point(a,a); };

abstype point[p] = <p>point_rep;

Informally, the abstype definition defines a new type point that hides or abstracts the
representation of the field data (p) allowing us to mix different point representations. For
example, we might define:

point polar_point(int mag, int angle) {
<polar>point_rep pol =
new point_rep(new polar(mag, angle),
add_polar, sub_polar, mul_polar);
return new point(pol);

}

point cartesian_point(int x, int y) {
<cartesian>point_rep car =

3Using conventional lambda-calculus-style notation, the Popcorn code be expressed with the following
type definitions:
point_rep = Aa.{ data: a,
add_point : a X a — a,
sub_point : a X a — a,
mul_point : a X a — a }
point = Ip.(point_rep [p)])
That is, point_rep is a type operator that takes a type argument a, while point is an existential type that
applies the type operator point_rep to the type variable p.

32

new point_rep(new cartesian(x, y),
add_cart, sub_cart, mul_cart);
return new point(car);

}

Notice that both function definitions return point values and that the return type makes
no mention of whether the representation of the point is polar or cartesian. Indeed, at the
point where we create a point (new point(pol) or new point(car)), we have abstracted
the representation. This is a lot like casting an object of a particular class in Java to one
of the interface types that the class implements—you lose the specific information about
what kind of object it is and must manipulate it through its abstract interface.

With these two definitions for creating points that are either polar or cartesian, we can
define, for instance, a list that mixes both kinds of points:

<point>list points = new list(polar_point(10,15),
new list(cartesian_point(0,0),
new list(polar_point(3,3),null)));

We can then write a function to manipulate the list through the exposed interface. A
simple example follows:

<a>point_rep double_point_rep<a>(<a>point_rep pr) {
a new_data = pr.add_point(pr.data,pr.data);
return new point_rep(new_data,pr.add_point,

pr.sub_point,pr.mul_point);

}

point double_point(point x) {
with prlp]l = x {
<p>point_rep new_pr = double_point_rep(pr);
return new point(new_pr);
}
¥

In this example code, we first define a polymorphic function which, when given a point_rep
where the data has type a, returns a new point representation where the data has the
same type. We do so by simply adding the old point representation data to itself and
packaging this up with the operations. But this function manipulates <a>point_rep values,
not points. The double point function does what we need to take a point with any
representation and apply the double point rep function to that representation.

The body of double_point uses a with statement to ‘open up’ the abstract point x.
Within the scope of the with statement, the variable pr is bound to the point representation
and the type variable p is bound to the type of the point representation’s data. That is, pr
has type <p>point_rep (for some type named by p) and can only be used within the scope
of the with body. Within the body, we call the double_point_rep function on pr. Given
any type p, double point rep will take a <p>point rep and produce a <p>point_rep,
thus we get back a <p>point_rep for a result. We then abstract p again by placing the

33

new <p>point_rep value new_pr in a point. Finally, we return the new point as the result
of the function.

We could then use the function double_point on each element of our list points to
double the value of each point:

<point>list dpoints = List::map(double_point, points);

Here we use the well-known map function, denoted List: :map, which applies the function
provided as its first argument (in this case double_point) to each element of the list
provided as its second argument (in this case points), returning the results in a new list,
in this case bound to the variable dpoints.

The with statement allows us to unpack or open up an abstract data type within some
scope. All this really means is that it gives us a way to name the type for a limited amount
of code and to get to the underlying value. Notice that if we open up two different points,
then the type-checker forces us to use different names for the two points and thus, their
respective point representation types cannot be treated as the same:

point pointl,point2;

with pri[pl] = pointl {
with pr2[p2] = point2 {
pr2.add_point(pl.data,p2.data); // fails to type-check!
¥
}

In the above example, the attempt to add point1’s data and point2’s data fails to type-
check. The reason is that point1’s representation might be incompatible with point2’s
representation. One might be tempted to rewrite the code so that we replace p2 with p1:

with pri[pl] = pointl {
with pr2[p1] = point2 { // fails to type-check!
pr2.add_point(pl.data,p2.data);

}
}

but the Popcorn type-checker will reject this. In general, Popcorn requires that semanti-
cally distinct type variables be syntactically distinct—it does not implicitly a-vary them.

4.2.6 Added Features

To support converting files to be loadable and updateable via a source-to-source transla-
tion, described in detail in Chapters 6 and 7, we needed to add some features to Popcorn.
We briefly describe those features here.

The & Operator

Supporting a generic & operator in a safe manner is problematic, so the original Popcorn
design left it out. A central problem is that taking the address of a stack-allocated value can

34

result in a dangling pointer if the result escapes outside the scope of the value’s declaration
(e.g. if a local variable’s address is returned to the caller).

On the other hand, when data is not tied to a local scope, acquiring its address is safe.
In particular, taking the address of global values is always safe. In addition, taking the
address of heap-allocated data is also safe, as long as the value that results is well-formed.
A simple case is taking the address of a particular field in a struct or tuple. For example,
given our struct definition of the <‘a>list, above, we could do the following:

<int>list 1 = new list(1,new list(2,null));
*(<int>list) l_elem = &(1.tl);
lelem.1 = new list(3,null);

In the first line, we create a two-element list. In the second line, we acquire the address of
the second field of the first element. The result has the same type as the field, but with an
added level of indirection; this is encoded in a tuple type. In the third line, we dereference
the address to assign a new list element. This effectively changes the t1 pointer in the list
1 to point to the new element. The overall effect is that the list 1 now has values 1 and 3,
rather than 1 and 2.

As another example, we can take the address of a tuple member:

*(int,int,int) three = new (1,2,3);
*(int) field2 = &(three.2);
field2.1 = 3;

This code has the effect of taking the address of the second field of the declared tuple, and
then assigning to it the value 3. These approaches extend to nested structures and tuples
as well.

In total, we have implemented & to work on global variables and the fields of all
struct and tuple values. While arrays and strings, which are always heap-allocated in
Popcorn, could be handled as well, they are less straightforward because they each have
an associated header that stores the length, needed for bounds checks. Taking the address
in the middle of a string would require constructing a new header to alias the substring
and store its length. We could add this feature if needed.

First-class Exception Constructors

Popcorn exceptions are first-class, but initially, Popcorn exzception constructors (a.k.a ex-
ception names) were not. An exception constructor can be thought of as the tag that
distinguishes a particular exception from another. For example, while there can be many
NullPointer exceptions, there is only one NullPointer exception constructor, shared by
all exceptions that bear its name. A particular exception constructor is declared as

exception Foo(int);
exn e = new Foo(1);

Here we declare some new exception constructor Foo, and then declare a Foo exception,
storing it in variable e. To support deferring the identity of a exception constructor
until dynamic link time, we allow exception constructors to be first-class. Continuing our
example:

35

<int>exncon econ = Foo;
exn e2 = new econ(l);

Here, we declare a variable econ of type <int>exncon, meaning that it can hold any
exception constructor that carries an int argument. We assign to econ the construct Foo.
We can then use econ to build an exception, as we do for e2. We similarly allow fields
in switch case statements to refer to variables containing exception constructors, rather
than just exception constructor ‘constants.” For example:

bool catch_exn(<void>exncon x, exn e) {
try
raise e;
handle z {
switch z {
case x:
{ print_string("caught passed exception");
return true; }

}

Here we define a function that takes as arguments an exception constructor x and an
exception e. The function raises the exception e, catches it, and checks its constructor in
the switch. The x in the case refers to the variable x passed in to the function.

Identifiers in Global Initializers

To simplify the construction of the indirection tables used for dynamic linking (see §6.2.1),
we allow global initialization expressions to contain variables, as long as the variable’s use
is ‘constant.” For example:

int a = 1;
int b = a; // illegal

This expression is illegal since b’s value depends on the value of a. However,

int a = 1;
int *(b) = &a; // legal

int x(int y) { return y+1; }
struct fnptr { int f(int); }
fnptr = new fnptr(x); // legal

This code is legal because the expressions &a and x (appearing in the constant expression
new fnptr(x)) are constant, and can be calculated at compile-time.

36

Type Representations

TAL and Popcorn both employ a type-erasure semantics. In particular, while types are
used in a first-class manner (particularly in polymorphic functions and data), they are
entirely parametric, meaning that the particular identity of the type is not of concern, and
therefore does not contribute to the runtime computation. As a result, first-class types
can be safely eliminated from the final executable code. However, we may wish to use
types intensionally [HM95], meaning that we wish to examine their identity to determine
program behavior. In this way, so-called intensional polymorphism allows for computations
on types. In this setting, types cannot be erased from the resulting executable, since they
take part in the computation.

In this work, we use types intensionally in our approach to dynamic linking. To keep
TAL’s type-erasure semantics but still be able to compute with types at runtime, we
introduce type representations into the normal term language. We defer discussion on the
syntax and use of these representations until §5.4.1, where we explain how they are used
by our dynamic linker.

37

Chapter 5
Dynamic Linking in TAL

Dynamic linking is the foundation of our approach to dynamic updating. For purposes of
performance and robustness, we have opted to use verifiable native code as our implemen-
tation platform, for which no well-designed methodology for dynamic linking previously
existed. For example, in the PCC Touchstone system, dynamic linking was ad-hoc, crafted
to support loading extensions into a non-PCC OS kernel [NL96], while Special J [CLNT00],
a PCC system for Java, lacks dynamic linking support altogether as of this writing. There-
fore, to implement dynamic updating in VNC based on dynamic linking, we need to first
design dynamic linking facilities for verifiable native code and implement them for TAL.
Rather than do something ‘quick and dirty’ just to support updating, we wanted our
implementation to stand on its own. Our approach was designed to meet three criteria:

1. Flexibility. While we are primarily concerned with dynamic linking as the foun-
dation of dynamic updating, we prefer to design a dynamic linking approach that is
general. We should be able to support typical source language linking entities, e.g.,
Java classes, ML modules, or C object files; and their loading and linking operations.
Furthermore, adding updateability should add little or no complexity to the basic
approach.

2. Security. Type-safe dynamic linking has been proposed as a means to run untrusted
code, since type-safe code is certain not to access information surreptitiously, such as
by creating a pointer from an integer and dereferencing it. We must therefore take
care in designing and implementing our approach so that it is secure. In particular,
the type system we use must be sound, and the trusted computing base (TCB) of
our implementation should be small.

The fact that code is type-safe is only of value if the type system used to check
the code is sound; that is, programs that are type-safe cannot be ‘ill-behaved,” such
as being able to forge a pointer. Therefore, the definition of the type system and
the proof that well-typed programs always behave in a secure manner is of critical
importance.

The term ‘trusted computing base’ comes from security terminology, and in our case
refers to the infrastructure that ensures loaded code is type-safe. A bug in the trusted
computing base could lead to a security violation, since some code that is apparently
safe is actually not so, and so may be able to exploit this weakness to, say, forge a
pointer. Early implementations of Java were found to be insecure due to this sort
of failure [Dea97]. To reduce the possibility of bugs, we prefer a small (and simple)

38

trusted computing base. The result is improved confidence in the system’s security
and consequently its robustness.

By themselves, VNC systems like TAL employ sound type systems and have small
TCB’s. Since we are adding dynamic linking to VNC, we want to do so in a way
that preserves the type system’s soundness does not overly expand the TCB.

3. Efficiency. Dynamic linking should impose little or no overhead above statically-
compiled programs, in terms of both space and time.

The goals for dynamic linking mirror our goals for dynamic updating, and thus in meeting
them we set a firm foundation for our updating approach.

In this chapter, we present our dynamic linking framework for TAL, called TAL /Load;
this is joint work was done with Stephanie Weirich and Karl Crary.! Our framework
consists of several small additions to TAL that enable us to program dynamic linking
facilities in a type-safe manner, rather than including them as a monolithic addition to the
TCB. Our additions are simple enough that a formal proof of soundness is straightforward.
Furthermore, our approach is not specific to TAL; it should be possible to implement it
in other verifiable native code systems. Ours is the first complete framework for dynamic
linking in verifiable native code.

The remainder of this chapter is organized as follows. We begin with informal defini-
tions of both linking and dynamic linking, to make our discussion more concrete. Next,
we motivate and outline TAL/Load, our framework for dynamic linking in TAL. Next,
we formalize this framework and prove it sound. Finally, we describe our implementation
in TAL. In the next chapter, we discuss how TAL/Load has been used at the core of
our Popcorn implementation of DLopen [Lin95], a UNIX library that provides dynamic
linking services to C programs. We also informally present how to program other linking
approaches using TAL/Load. Performance data is presented for both dynamic linking and
dynamic updating in Chapter 10.

5.1 Background

To understand how to build a dynamic linker for TAL, a low-level language, we need
to understand what is typical of dynamic linkers in high-level languages. Knowing this,
we can design lower-level primitives in TAL on which to map higher-level dynamic linking
abstractions. We begin by describing how programs are linked statically, and then examine
how dynamic linking changes the landscape. We ultimately break down how a typical
dynamic linker is implemented using code for loading, linking, and symbol management.

5.1.1 Static Linking

Most non-trivial programs are constructed from one or more program modules. While
the definition of a module differs with programming language, most often a module is a
collection of definitions which map symbol names (or simply, symbols) to code fragments;

LAs of this writing, Karl Crary is at Carnegie-Mellon University, and Stephanie Weirich is at Cornell
University. A breakdown of each person’s contributions is presented at the end of the next chapter.

39

the delineation of a module is typically a single source file. For example, consider the
following C module, stored in the file f.c:

int d = 5;

int g(int x) {
return x+d;

}

int f(int x) {
return g(x)+1;

}

This module contains three definitions: symbol d is mapped to the constant 5, and symbols
g and f are mapped to functions. All of the symbols mentioned in the module code refer
to definitions in the module itself.

Programs can consist of more than one module, in which case some symbols will refer
to definitions in other modules. For example, we could break up f.c into two files, f.c
and g.c, shown in Figure 5.1.

g.c: f.c:

int d = 5; extern int g(int);

int g(int x) { int f(int x) {
return x+d; return g(x)+1;

} }

Figure 5.1: Two C modules to be linked together.

Now the function g and the integer d are defined in the file g.c, while the function £
is defined in £.c. As a result, the symbol g mentioned in £ is external to f.c; we also say
that module f.c imports the symbol g.

The modules f.c and g.c can be combined together into a single program by a pro-
cess called linking. Given two or more modules as arguments, a program called a linker
combines the modules’ code and resolves any references to externally-defined symbols by
matching those references with the appropriate definitions in other modules. In the case
of £.c and g.c, the linker would resolve the reference to g in f.c with the definition of
g in the file g.c. The linker will only resolve a module’s imported symbols with symbols
exported by other modules; that is, a module may have definitions that are not available
to other modules during linking. For example, in C (and Popcorn), such definitions are
prepended with the keyword static.

5.1.2 Dynamic Linking

Originally, the process of linking only occurred statically to construct programs from
separately-compiled modules. That is, linking always occurred before program execu-
tion, with the requirement that all references be resolved before the program could run.

40

However, many programming environments now support dynamzic linking, in which the pro-
gram may invoke a dynamic linker at runtime to extend itself with new modules. When
new modules are added, their imports are resolved with the exports of the modules in the
running program.

A dynamic linker must perform three tasks: it must load the module into the memory
of the running program; it must link the loaded module with the running program; and it
must manage the program’s symbols for use in future dynamic linkages. While all dynamic
linkers implement these tasks, the the details differ. Consider each task more closely:

Loading Loading entails reading the module from disk or from the network, making some
well-formedness checks, and mapping it into the program’s address space. Well-
formedness checking varies with the programming environment. For example, Java
modules, called classfiles, are verified to respect certain safety properties, including
type safety, before they are added to a program. By contrast, C object file loaders are
only concerned only with the well-formedness of the object file metadata—mo checks
are made to assure that the code contained therein is type safe (or even well-formed).

Linking Linking entails resolving the imports of the loaded module with the exports of the
running program. The linking process also varies with programming environment.
In particular, there is the question of when imports are resolved, and the question of
how dynamic linking is implemented.

Linking is typically performed at one of two times: load-time or on-demand. In the
former case, all of the module’s imports are resolved immediately after it is loaded; if
a reference cannot be resolved then the linkage fails. In the latter case, imports are
resolved just before the program references them. This amortizes the linking process
over the program’s execution and avoids linking symbols not needed by a particular
run. The C dynamic linking interface on Unix systems, called DLopen [Lin95], allows
both linking styles, while Java links classes on-demand.

Dynamic linking is typically implemented either via indirection or code rewriting. In
the former case, external references are compiled to be indirected though a module-
local table. Linking then consists of filling in the table. When using native code, some
extra code fragments can be used to allow references to be resolved on-demand (cf.
ELF [TISC95]), while a virtual machine architecture like the JVM can incorporate
on-demand linking into its instruction semantics. Code rewriting links modules by
rewriting the code so that references point directly to the appropriate external defini-
tions. The ELF dynamic linking [TISC95] standard, often implemented in DLopen,
uses the indirection approach (the indirection table is called a global offset table, or
GOT), while the Linux kernel’s loadable module facility (called modutils), uses the
rewriting approach.

Symbol Management To link a loaded module into the running program requires that
the addresses of the program’s symbols be available to the dynamic linker. How
these symbols are maintained (i.e. what kind of datastructure) and which symbols
to use are questions of symbol management. Considering the latter question, there
are many circumstances in which certain symbols should not be available during
linking. As mentioned above, C definitions declared to be static should not be

41

available when linking a loaded module since these symbols are considered local to
the module in which they are defined. In addition, symbols may be precluded from
linking for security concerns. In Objective Caml (OCaml) [Ler00], program modules
define a ‘safe’ interface that is a subset of the actual module interface; only the safe
interface is made available during dynamic linking. This approach is taken one step
further in ALTEN [AHIT00, Ale98], in which each symbol’s availability depends on
the privilege of the loading code. There is even the possibility that symbols may be
resolved with different values. For example, untrusted code could be linked against
a version of open that only works for files in the /tmp directory, while trusted code
is resolved with the normal open function.

5.2 TAL/Load

Because TAL serves as the target for high-level languages, dynamic linking in TAL must be
general enough to accommodate the wide variety of dynamic linking approaches described
above. We begin by considering a straightforward but flawed means of adding dynamic
linking in TAL, to motivate our actual approach.

Consider defining a primitive, loadg, that dynamically loads and links a TAL module
into the running program. Informally, loadg might have the type:

loadp : Vo :sig.bytearray — « option

That is, loadg takes two arguments: the expected signature of the loaded module, stored in
the variable «, and the binary representation of the module, stored as a bytearray. The
signature is a description of the module’s contents, including the names and types of its
functions, as well as the names and definitions of its user-defined types. loady parses the
bytearray, checks it for well-formedness, and links any unresolved references in the module
to their exported definitions in the running program. It compares the module’s actual
signature with the expected one «; if the signatures match, it returns the module to the
caller. If any part of this process fails, loadg returns null to signal an error.?

As an example, say we have some TAL module that corresponds to the file f.c that
we presented in Figure 5.1 on page 40. This module compiled to TAL is stored in the file
f.tal. If we have some program that wishes to dynamically link in f.tal and invoke its
function f, the program could contain the following (Popcorn-like) code:

m = loady ([sig f: int — int end], read file("f.tal"));
if (m != null)
return m.f(12);
else
. handle error

Here we call loadp with the signature as its first argument, which indicates that the loaded
module should contain a single function f that maps integers to integers. The second
argument is a bytearray containing the contents of f.tal, obtained by some function

2The option type in SML usually defines a constructor NONE to indicate undefined values; we use the
more Popcorn-like null in our exposition instead.

42

read_file. The module is loaded and linked, and then stored in the variable m; its refer-
ence to g is resolved with a value defined in the running program. If dynamic linking is
successful, then m is not null, so we can invoke its function f. Otherwise, an error occurred
and we have to take some action.

While reasonably simple and intuitive, there are a number of obstacles to implementing
this approach.

1. We require a way to manipulate modules as data, so that they can be stored in
variables when returned from loadg, giving modules ‘first-class’ status. In the context
of a rich type system, first-class modules require a complicated formalization (e.g.,
Lillibridge [Lil97]) with restrictions on expressiveness; as a result, most ML-variants
(and TAL as well) do not permit modules to be manipulable as data, relegating them
to ‘second-class’ status [HMM90, Ler94, MTHMO7].

2. The signature argument to loadg is essentially a type being used as data. Implement-
ing types as data is typically done using a type-passing semantics, which requires that
types have a runtime representation, but one that is not under the explicit control of
the programmer. TAL prefers a type-erasure semantics whereby all of the typing an-
notations can be stripped away without affecting the program’s computation; these
two semantics are incompatible.

3. All of the code for loading, linking, and symbol management occurs as part of loadg.
As a result, the system’s flexibility is diminished, since the policy decisions con-
cerning linking and symbol management are fixed. For example, loady performs all
of its linking at load-time, precluding a Java-like semantics where linking is done
on-demand. In addition, it provides no means to incorporate source-language or se-
curity policies concerning symbol management, such as precluding module-local or
protected symbols from linking. Furthermore, the entire implementation of loadg is
trusted (since it is outside the TAL type system), reducing system security.

To improve flexibility, we could parameterize loadg to accommodate different styles
of linking, or to break it into trusted component parts that closely map to common
source-language operators—this approach is taken in TMAL [Dug00]. However, all
dynamic linking functionality would still be within the TCB.

To allow dynamic linking operations to be more flexible and to reduce the additions to the
TCB, we reduce the prominence of the loadg primitive and make it part of a dynamic linking
framework with which we can program source-level dynamic linking approaches. That is,
rather than expect load to perform the tasks of loading, linking, and symbol management,
we reduce the role of load to just loading, and allow linking and symbol management to
be programmed in TAL itself, using features already present in TAL, along with a few
carefully selected new features. The result is improved flexibility, since policy decisions
concerning linking and symbol management can now be programmed using TAL. We also
improve system security, since we only expand the TAL TCB with code to support loading.

We call our framework TAL/Load. We now describe this framework informally by
explaining how it addresses the three problems mentioned above:

43

1. We avoid the use of first-class modules. First-class modules are theoretically problem-
atic because modules may contain type definitions (referred to as type components)
as well as function and data definitions (collectively referred to as value definitions).
The difficulty arises because the meaning of a type component depends on the mod-
ule that the type is defined in. That is, if M and N are arbitrary expressions of
module type having a type component ¢, it is difficult at compile-time to determine
if the type M.t is equal to (is the same name as) N.t. The problem arises because we
do not know the identities of types M.t and N.t, and therefore must use their names
(including the paths) to compare them. Type components are an instance of named
types (a.k.a. branded types). Named types are also used to implement generative
types (such as structs in C or datatypes in ML).

TAL avoids the type component problem by making named types globally scoped. As
a result, no two modules in a program may define a type having the same name, and
therefore the identity of a type can always be known at compile-time, based on just its
name. There is no need for loadg to return a value of module type (which consists of
both type and value definitions), so our new loading primitive, called load, returns a
tuple containing the module’s exported value definitions instead. Any exported type
definitions are added to a global program type interface maintained by the loader
for the running program. This interface is a list of currently defined types and their
definitions used during type-checking to ensure that imported type definitions of
modules loaded later are consistent with ones already defined. In essence, the loader
is responsible for ensuring that no loaded code defines duplicate type names.

2. Rather than require a type-passing semantics for the type argument to load, we use
an explicit representation of types as data, in the style of Crary et al. [CWM98]. We
create special values, called type representations, that correspond one-to-one with
the types they represent, and the relationship between the two is known by the type-
checker. This allows type representations to participate in the proof of type-safety
but still be under the explicit control of the programmer.

3. Since we expect linking and symbol management to be programmed in TAL, rather
than fixed as part of load, we restrict load to load only those TAL modules that do
not have any imported values; i.e. modules are required to be closed with respect
to values. This ensures that load will not be responsible for linking TAL modules
and managing the program’s value symbols. On the other hand, TAL modules can
import externally-defined type definitions, which are maintained in the program type
interface, as described above.

To support linking, we compile source-language modules that import values to be
closed TAL modules; the idea is to encode the mechanisms needed to implement
linking as TAL code. For example, we could compile source-level external references
into local data ‘cells’ to ultimately store the external values. After the module is
loaded, these cells are filled in appropriately by the dynamic linker, also written
in TAL. In essence, this is the indirection approach to implementing linking, as
described in the previous section. For example, consider once again the module f.c
in Figure 5.1 on page 40. We can close this module as shown below:

44

f.c: f.c compiled to be closed:

extern int g(int); static int (*g) (int) = null;
int f(int x) { int f(int x) {

return g(x)+1; return g(x)+1;
} }

Here we have translated the extern for g into a function pointer. Initially this value
is set to null, but following dynamic loading, the linker will set it with the value of g
as defined in the running program. In a type-safe language like Popcorn, null-checks
will be inserted to ensure that g is not dereferenced by the function £ if it has not
been filled in.

For the dynamic linker to track the running program’s symbols, we can program
a type-safe symbol table in TAL. To do so, we use type representations, existen-
tial types [MP88] and a special checked_cast operator to implement type dynam-
ics [ACPP91]. We go into greater detail about compiling for dynamic linking and
how we implemented the symbol table in the next chapter.

For the remainder of this chapter we more carefully describe TAL/Load. In the next sec-
tion, we present a formalization of the load primitive in a variant of polymorphic lambda-
calculus that captures the relevant elements of TAL/Load. We prove that this calculus,
which we call the load-calculus, is type-safe. In Section 5.4, we describe the implementa-
tion of TAL/Load in the TALx86 [MCG™99] implementation of TAL. We show that our
implementation adds little to the TALx86 trusted computing base. In particular, the ma-
jority of the functionality of load—unmarshalling and type-checking TAL object files—is
already a part of the TALx86 TCB. Finally, we close with some discussion on how we could
increase the flexibility of load with a simple extension.

5.3 The load-calculus

We designed the load-calculus to balance two tensions. We wanted it to be simple enough
that a proof of soundness would not be overly tedious, but enough like TAL that a corre-
spondence between the two, in terms of the intended result of type soundness, is believable.
To balance these tensions, the load-calculus is essentially a variant of the well-studied poly-
morphic lambda calculus [Gir71, Rey74], for which proofs of soundness are well-known,
but is formulated using an ‘allocation-style’ semantics. In this formulation (cf. [MH97]),
a program’s heap is explicitly considered, and thus programs more closely correspond to
actual machine-language programs. Because TAL programs are by nature imperative, pro-
grams can alter values stored in the heap, essentially treating heap locations as reference
cells, e.g. [Har94]. Programs also keep a program type environment, described informally
in the previous section, for the purpose of modeling named types.

In this section, we present the load-calculus. We begin by describing an untyped version
of the calculus, giving a flavor for the evaluation of programs, and showing how ill-formed
programs can go ‘wrong.” Next, we add types, with the intention that a well-typed cannot
go ‘wrong;’ this is the calculus’s key property of type soundness. Finally, we add named
types to the formulation, to model type components found in TAL modules. The entire

45

i|x|\r.e|er ey
L|ref e| assign e eq|le
load e e1 €3

eTrpressions e

ieZ values v i|Ax.e|L
L € Labels heaps H := {Li=wvy,...,L,=v,}
x € Vars programs P == (H,e)

Figure 5.2: Untyped load-calculus Syntax

calculus and its proof of soundness is presented in Appendix A.? This work was originally
done jointly with Stephanie Weirich from Cornell University [HWO00], but the presentation
here is completely new.

5.3.1 The Untyped load-calculus

We first present the syntax of the untyped load-calculus, and then describe how its pro-
grams evaluate, using an operational semantics.

Syntax

The syntax of the untyped load-calculus is shown in Figure 5.2. A program P consists of
heap H and an expression to evaluate e. The heap models a program’s memory, including
its code and data, while the expression models its execution. Comparing load-calculus
programs to typical, UNIX-like processes, the heap is equivalent to a process’s code seg-
ment, static data segment, and runtime heap; while the expression represents the program
counter and the stack.

Expressions can be divided into three classes. The first contains the standard, lambda-
calculus expressions: variables (z), integers (i), abstractions (Az.e), and applications
(e1 e2). The second class contains expressions relating to the program’s heap (using the
standard interface for reference cells, e.g. [Har94]): labels (L), allocation (ref e), assign-
ment (assigne; ez), and dereference (le). The third class contains the load expression
used to perform dynamic linking.

A heap is represented as a finite map from labels L to values v. Values are a subset
of expressions e consisting of integers (i), labels (L), and abstractions (Az.e). Intuitively,
a label L is an address in memory, pointing to either a function or some data. Labels are
created either statically, as part of the initial program, or dynamically, though allocation.
For example, in modeling the module g.c shown on page 40 in Figure 5.1, the initial
program heap would be:

{d=5g=Az.(z+1d)}

That is, the label d maps to the integer 5, and the label g maps to a function that adds
its argument to the value stored at label d (the ! operator indicates that the label should

3The formalization in the appendix includes the use of a type heap mask, described in Section 5.5.

46

(H,e) — (H' €

(H, A\z:Te)v) +— (H,e[v/x)]) (beta)
(H,ref v) — (HW{L=v},L) (ref)
where L ¢ dom(H)
(H,!L) — (H,v) (deref)
where H(L) =
(H,assign Lv) — (H[L =v],v) (assign)
(H,e) — (H',€)
(H, 662) — (H' € e9)
(H,ve)— (H' ve)
(H,refe) — (H’,ref) (congruence)
(H,'e) — (H',!e)
(H,assigne 62) — (H' assign €’ e9)
(H,assignve) — (H' ,assignv ¢)

Figure 5.3: Operational rules for the untyped calculus, excluding load

be dereferenced to obtain the value stored there). The heap is also used to store values
allocated by the program at runtime using the expression ref e; intuitively, this expression
evaluates e and then stores the resulting value at a newly-allocated memory location. The
contents of a memory location can be changed with assign .

Following convention, we consider expressions to be equivalent up to a-conversion of
lambda-bound variables. Heap labels may be a-converted as well, following the intuition
that addresses in a program may be relocated without affecting the program’s correctness.
To make the code examples more meaningful, we include additional operators, like addition
on integers. The standard lambda-calculus is powerful enough to encode our shorthand
changes (addition on integers can be encoded using Church numerals), so our result is not
compromised.

Semantics

We define the operational semantics for the load-calculus using a deterministic, one-step
reduction operator +—, following a call-by-value discipline. The rules, not including load,
are shown in Figure 5.3. The first four rules are computation rules, which define how the
program evaluates by rewriting, while the remaining are congruence rules, which define
the order of evaluation to be left-to-right, call-by-value.

The beta rule performs function application via substitution; we define e[e’/z] as the
capture-avoiding substitution of the term e’ for each occurrence of the variable x in the

47

term e. The next three rules operate on the heap. Notationally, we write H(L) to denote
v in the heap H = {...,L = v,...}. For the heap H = {L1 = v1,...,L, = v, }, dom(H)
refers to the set {Lq,...,L,} and rng(H) = {v1,...,v,}. T H={...,L = v,...}, then
let H[L = v'] be the heap {...,L =/,...}; this operation is undefined if L ¢ H. The ref
rule allocates a unique label L in the heap and stores the value v there. The deref rule
extracts the value v mapped to by label L in the heap. The assign rule overwrites the
existing mapping for label L in the heap with one from L to v.

As a simple example, consider the evaluation of the following program, based on our
translation of the file g.c (see Figure 5.1) above. This program invokes the function g
with the argument 4, ultimately returning 9:

({d=5;g=Az.(z +1d)},(lg4)) — ({d=5g=2Az.(z+!d)},((Az.(z +d)) 4))
— ({d=5g=Mx.(zx+!d)},(4+1d))
= ({d=5;g=Az.(z +1d)},(4+5))
— ({d=5g=Mx.(x+14)},9)

As another example, the following program starts with an empty heap, allocates a label
to store the integer 4, and then increments it by 1:

({}, (A\z.assign z(lz+1)) (ref4)) — ({Li1 =4}, (Av.assign z (lz+1)) L1)
— ({L; =4}, assign L; (L1 + 1))
— ({L1 =4}, assignL; (4+ 1))
— ({L; =4}, assign L; 5)
= ({L1=5}5)

The running program can load new code into itself using the load primitive. Loaded code
has the form (H,e), which is the same as a normal program, except that e should be
thought of as the loaded code’s initialization expression. Following the semantics for load
in TAL/Load, described in §5.2, we would expect the initialization expression to return the
values defined in the program. Informally, loading code with load consists of 1) merging
the loaded code’s heap with that of the running program, 2) executing the loaded code’s
initialization expression, and 3) continuing computation in the running program using the
result of initialization. If the merge operation fails, then the initialization expression is not
invoked, and the running program continues on an alternate path.

The crux of the load operation is the merging of the program heap and the loaded
code’s heap. Heap merging is disjoint union, defined formally below.

Definition 5.3.1 (Heap Merge)

H, | Ho
Hl merge H2 = Hg

(Hg = H; L‘UHQ)

where we define Hy | Hy dom(Hj) and dom(Hs) are disjoint
Hy W Hy Union of disjoint maps, defined if Hy | Ho

48

(H,e) — (H' €

H merge H; = H'

(H,load i es ef) — (H', e1 €;) (Z = (H;, ei)) (load — success)
(H,load i es ef) — (H,ey) (load — failure)
otherwise

(H,e) — (H',¢)
(H,load e e ef) — (H',load € e, ef)

(congruence)

Figure 5.4: Rules for load in the untyped calculus

Because we permit a-conversion of heap labels, if the condition Hy | Hs is not met,
we can a-convert one of the heaps. This is because loaded programs are expected to be
closed, meaning that all labels mentioned therein (whether in the heap or the expression
part), refer to labels defined in the heap, and thus the program is completely relocatable.
This expectation is in contrast to typical formulations of heap linking (e.g. MTAL [GM99],
program fragments [Car97], TMAL [Dug00], etc.); these systems assume that free labels
refer to (and will be resolved with) definitions in programs to be linked against, and thus
the names of the labels have meaning. In our case, we assume any sort of linking will take
place in the term language, as we sketched in §5.2 (and show in more detail in §5.3.3).

The formal rules for load are shown in Figure 5.4. The first argument ¢ to load is the
binary representation of a program, represented as an integer. Loading begins by convert-
ing the binary representation i into some program (H;, e;); we use * as some function that
maps integer arguments to programs, modeling a filesystem. The second two arguments
to load are the success and failure expressions. If H merge H; = H’, then the heap of the
running program H can be merged with the heap of the loaded code H;, then we use the
load — success rule, in which the success expression ey is applied to the loaded program’s
initialization expression e; and execution continues with the merged heap H’; otherwise
the expression ey is used (i.e., when using load — failure) with the original program heap
H. In the untyped calculus, a failure expression is not really necessary since load can never
really fail; however, when we add types, a number of potential failure conditions arise.

As an example, consider the following. The running program loads some code that
defines a single function g that adds 1 to its argument; the initialization expression returns
g. After loading the program, the running program invokes the function g on the value 4,
defined in its own heap.

({d =5}, load i (Af.f !d) 0) where 1 = ({g = \r.x +1},1g)
— ({d=5,g= e+ 1}, (\f.f1d)lg)
— ({d=5,g= X z.x+ 1}, (\f.fld) Az.z+1)
— ({da=5,g=Az.x+1}, Az.x+1)!4d)

49

\]
|

int |7 — 7|7 ref |a|Va.T

{Ly:71, .., Ly :Tn}

types
heap types d

exrpressions e == .. Az:T.e|Aae]elr]
| load[7] eg €1 e
values v on= L AxcTe | Aace
type contexts A = | A«
a € TypeVars ‘ contexts r == |a:7

Figure 5.5: Typed load-calculus syntax, minus named types (changes from Figure 5.2)

— ({d=5,g=A v.x+1}, A\z.x+1)5)
— ({d=5,g=Az.x+1}, 5+1)
— ({d=5,g = r.x+1}, 6)

In the calculus, well-defined programs either evaluate to answers, in which the expres-
sion part is a value (thus having the form (H,v)), or they diverge (i.e. never terminate).
Ill-defined programs are ones in which the expression part of the program is not a value, but
there is no possible evaluation rule to apply. Sometimes such programs are termed stuck
programs (cf. [MH97]). Though we will not attempt to identify all of the syntactic forms
of stuck programs, the intuition is that the program has been incorrectly constructed. For
example, the following program is stuck:

({} (Az.x))

No rule from Figure 5.3 can be used to further evaluate this program, and !(Az.z) is not
a value. The dereference operator expects its argument to be a label from the heap, but
here its argument is an abstraction.

In the next subsection, we add types to the calculus. The type system is designed so
that well-typed programs never become stuck, and thus (in the real world) never crash.

5.3.2 Adding Types

Now we add types to the calculus presented thus far. Because TAL/Load supports type
components in its modules, we will further extend the calculus presented here to support
named types, but we defer doing so until the next subsection.

The syntax of the calculus modified to include types is shown in Figure 5.5. If not
shown in the figure, the syntax is the same as in Figure 5.2. Types 7 include the integer
type int, arrow types 7 — T, reference cell types (i.e. heap label types) 7 ref, type
variables «, and polymorphic types Va.7. Heap types ® map heap labels to types 7. Both
the abstraction and load expressions have been decorated with types, and we have added
expression forms to support parametric polymorphism: type abstraction (Aa.e) and type

50

AFT

A F int a€A
AF o

Ab7 Abr AbT A’O‘H(agm
AFT — 71 AFrefr A FVYa.1

-7 (for each 7 € rng(®))
(i

Figure 5.6: Well-formedness for types and heap types

application (e[r]). Values now include type abstractions. To support type-checking, we
define type contexts A as lists of type variables, and contexts I' as lists of mappings from
variables = to types 7.

Static Semantics

The typed calculus defines judgments to assert that a program is well-formed. Well-
formedness is defined inductively. That is, a program is well-formed if its heap H and
its expression e are well-formed. Heaps are well-formed if they may be given some well-
formed heap type ®, and similarly, expressions are well-formed if they may be given some
well-formed type 7.

The judgments for type and heap type well-formedness are shown in Figure 5.6. Types
are checked for well-formedness in relation to a type variable context A. This context is
used to make sure a type variable « is properly quantified. A heap type ® is well-formed
if all of the types mentioned in its range are well-formed.

The judgments for expressions, heaps, and programs are shown in Figure 5.7. Most of
expression typing rules are standard; noteworthy is the rule for load. As mentioned earlier,
the first term argument, which is mapped at runtime to a program, must have type int.
The type argument 7’ indicates the expected type of the loaded program’s initialization
expression. The second term argument is the ‘success-expression’ which is applied to the
loaded code’s initialization expression, so it must take an argument of type 7/, returning
a result of type 7. The final term argument is the ‘failure-expression’ which is executed if
loading fails; its type must match the return type 7 of the success condition so that the
overall type of the load expression will be 7. A heap H is well-formed if the values in its
range have the type indicated by the given heap type, and a program (H,e) is well-formed
if its heap and expression are well-formed.

Dynamic Semantics

The operational semantics of the typed calculus is the same as that of the untyped calculus
(see Figures 5.3 and 5.4) with two exceptions. First, there is an additional evaluation rule

o1

;AT ke T

O;A;T F e @ int
QAT hey:7 —71
DA T'Fesg: T
®; A;T +load[r] e1 eg e3 : 7

®:A;T'F4:int QAT Fa:T(x) O; AT HL:®(L) ref

O AT, o7 bFe:T AN il O;A;The i7" —71 O: AT Feg: 7

;AT Mre: 7 — 1 O:A;ThHejeg: T
O:A ;T Fe: T O A:T'Fe:Var AT
;AT F Aae: Va.r ;AT Fe[r]: T[T /o]

O A:T'Fep:7ref

;A T'He:T O;A;T'He:7ref ;A TEeg:T
O, A;T'+refe: 1ref O, A T'Hle: T ®O; A;T' - assigneyeo: T
FH:®
O, H(L): ®(L) (for each L € dom(H))
FH:®
F(H,e):T

o FH:® b ke
F(H,e): T

Figure 5.7: Well-formedness for expressions, heaps, and programs

for type application (which is standard):

(H, (Aa.e)[r]) = (H,e[r/a]) (tapp)

That is, a type application substitutes the type 7 for every occurrence of type variable o
in the body e of the abstraction. Second, the load-success rule changes to verify that the
loaded program is well-formed:

F(Hje): T
H merge H; = H' (% _ e‘)) (load-success)
(H,load[r] i e1 eg) — (H',e1e) \' "7

As before, heap merging Hmerge H; = H' must be well-defined, but in addition the loaded
program must be well-formed, + (H;,e;) : 7, whose type 7 matches the type argument

52

passed to load. As a result of this change, we require a type-passing semantics because the
type argument passed to load is used at runtime.*

5.3.3 Adding Named Types

So far, the calculus that we have considered does not define programs (i.e. modules) as
having type components. In this subsection, we complete the formulation of the calculus
by adding a type environment to our notion of program, which allows for the definition of
named types. We begin by motivating our approach to named types, and then present the
additions to the calculus to support them.

Motivation

The load primitive forbids the loading of programs with free variables in the heap; one
interpretation of linking would allow such programs, and would resolve these undefined
references with definitions in the program’s heap. Instead, we expect that the source-level
modules with external references will be compiled to closed TAL modules, and the process
of linking at the source module level will be reflected in the compiled TAL code.

As we briefly outlined in the previous section, closing a module by compilation is fairly
simple. For example, consider the following SML module, perhaps forming part of an I/0O
library, that supports the opening and reading of text files:

structure TextIO =

struct
type instream = int
val openln : string -> instream = ...
val inputline : instream -> string = ...

end

This module consists of the value definitions openIn, inputLine, and maybe others, as
well as the type component instream, implemented as an integer. A client of this module
might be something like:

fun doit O
let val h = TextIO.openIn "myfile.txt" in
TextIO.inputLine h
end

Say we wanted to dynamically link this code into a program that uses the TextI0 module.
We need to compile it so that it no longer makes reference to the externally defined TextIO
module. One way to do this is to convert externally referenced values into locally defined
references to values:

4 As mentioned in the last section, we are able to use type-erasure semantics in TAL/Load by introducing
term representations for types, in the style of Crary et al. [CWMO98|.

53

val TextIO openIn : (string -> int) option ref = ref NONE

val TextIO_inputLine : (int -> string) option ref = ref NONE

fun doit O
let val h

getOpt (!TextIO_openln)
"myfile.txt" in
getOpt (!TextIO_inputLine) h

end

We initially fill the reference with NONE, indicating it has no value, and when the module
is dynamically loaded, the reference is filled in with the proper value.

However, we run into difficulty when we have externally defined values of named type.
Named types are noteworthy because they are only considered equal if their names match,
regardless of whether their implementations do. In particular, consider the following (SML-
like) code sequence:

named type til int
named type t2
fun bad_eq x:tl1 y:t2 =

X =Yy

int

The code for the function bad_eq would fail to type-check because the values x and y have
different named type, even though they both are implemented as integers.

To see the problem with closing a module that has values of named type, consider if
TextI0 wished to hold the type instream abstract. As a result, we cannot replace the
type with its definition int, as we did above. Instead, our attempt to close the client code
as before would result in:

val TextIO openIn : (string -> TextIO.instream) option ref = ref NONE
val TextIO_inputLine :
(TextIO.instream -> string) option ref = ref NONE

While external references to values have been eliminated, we still have the external ref-
erences to the type TextIO.instream. We cannot easily create a ‘hole’ for these type
references like we did for values because type equality needs to be checked at load-time
when load checks the loaded code for well-formedness. Because named types must be
known by the type-checker, our solution to this problem is to extend our notion of pro-
gram to include a type interface which notes all of the named types, and their definitions,
used in the program. This is possible because, unlike the SML module system, the TAL
module system uses a global type namespace, meaning that a given type name can only be
defined once in the whole program. In SML, types with the same name are differentiated
by the module they are defined in.

For the remainder of this subsection, we present the syntax and semantics of the load-
calculus having support for named types.

Syntax

The extensions to the typed calculus syntax to support named types are shown in Fig-
ure 5.8. Programs are extended to include a type interface © of the form (X;, Xg), which

o4

types T = ..n
{nl = X1y---,Mn :Xn}

type environments X o=
type environment values x == T[T
type inter faces 0 == (X1,Xpg)
erpressions e u= .. reveal el hide, €
values v = .. hide,v
n € TypeNames ‘ programs P == (©,H,e)

Figure 5.8: load-calculus syntax including support for named types

is a pair of type environments that map type names n to their implementations; types 7
are extended to include type names. X; mentions the named types imported from other
modules, and Xz mentions named types defined by (exported from) this one. For example,
the type interface of the SML-like program fragment above that defines types t1 and t2,
would be:

({},{t1 = int,t2 = int}

In this case, the type names t1 and t2 map to types 7 (int). However, type names can
also map to T to implement type abstraction. For example, to make the named type
instream abstract, the type interface of the client code above (defining the function doit)
would be:

({instream = T}, {})

and the interface for TextI0 would be the reverse:
({},{instream = T})

Values of named type are considered isomorphic to the values of the named type’s defini-
tion; we use the coercions hide and reveal to witness the isomorphism. In the example
above, to convert the value 1 to have type t1, we would do hidey; 1. Converting it back
to an integer would simply require a reveal; i.e. reveal (hidey; 1). A reveal is not
permitted if the named type is abstract, disallowing the code from ‘looking’ at the value;
we formalize this case in the static semantics, below.

Static Semantics

The well-formedness judgments must be adjusted to account for the type environment;
the judgments from Figures 5.6 and 5.7 are shown in Figure 5.9. There is one additional
judgment, - X, for type environment well-formedness. For all of the old judgments, well-
formedness now additionally requires a type environment in its context.

For types, the judgment changes from A F 7 to X;A F 7. All of the type well-
formedness rules from Figure 5.6 are the same, except that we add a type environment to
the context; there is also the additional rule for named types which states that a named

55

X AT
n € dom(X)
X:Abn

FX
X; -7 (for each 7 € rng(X))

FX

X+FHo
X; -7 (for each 7 € rng(®))

XE®

XFH:®
X;®;-F H(L): ®(L) (for each L € dom(H))
XFH:®

‘X;@;A;Fl—e:T‘

X;o:A;THe:n X; o, A Fe: T
X;P;A;T Freveale: 7 (X(n) =17) X;®;A;T' - hide, e:n (X(n) =1)

‘XPI—(G,H,e):T‘

FXrwXy X Xgt®
X XygtH-H:® XWXy, @, Fe:r

Xpt (X5, Xn) H,e):7 (Xu [Xp)

Figure 5.9: Additional and/or modified rules defining well-formedness for types, heap
types, expressions, heaps, and programs

type n is well-formed if it is mentioned in the type environment. The change to this
judgment is reflected into the judgments for heap and heap type well-formedness. The
new judgment for type environment well-formedness states that a type environment is
well-formed if all of the types mentioned in its range are well-formed. Named types may
be mutually recursive, but a well-formed type environment must be closed; all of the type
names appearing in its range must appear in its domain.

For expressions, all of the judgment rules from Figure 5.7 are the same, except that a
X is added to the context. There are two new rules for named types, one for hide,, and
the other for reveal. We use reveal to coerce an expression e having some named type
n. The result has type 7, where n maps to 7 in the type environm