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ABSTRACT

Single-language runtime systems, in the form of Java virtual machines, are

widely deployed platforms for executing untrusted mobile code. These runtimes

provide some of the features that operating systems provide: interapplication mem-

ory protection and basic system services. They do not, however, provide the ability

to isolate applications from each other. Neither do they provide the ability to limit

the resource consumption of applications. Consequently, the performance of current

systems degrades severely in the presence of malicious or buggy code that exhibits

ill-behaved resource usage.

In this dissertation, we show that Java runtime systems can be extended to

provide a process model, and that such a process model can provide robust and

efficient support for untrusted applications. Processes are an operating system

abstraction in which each process executes as if it were run in its own virtual

machine. We have designed and prototyped KaffeOS, which is a Java runtime

system that provides support for processes. KaffeOS isolates processes and manages

the physical resources available to them, in particular: CPU and memory. Each

process is given its own heap, which can be separately garbage collected. Unlike

existing Java virtual machines, KaffeOS can safely terminate processes without

adversely affecting the integrity of the system, and it can fully reclaim a terminated

process’s resources.

The novel aspects of the KaffeOS architecture include the application of a

user/kernel boundary as a structuring principle to runtime systems, the employment

of garbage collection techniques for resource management and isolation, and a

model for direct sharing of objects between untrusted applications. The difficulty in

designing KaffeOS lay in balancing the goals of isolation and resource management

against the goal of allowing direct sharing of objects.



We built a prototype of our design and ran the SPEC JVM 98 benchmarks to

evaluate its performance for well-behaved applications. We found that for those

applications, our KaffeOS prototype is no more than 8% slower than the freely

available JVM on which it is based, which is an acceptable penalty for the safety that

it provides. At the same time, our KaffeOS prototype can support more applications

than a hardware-based approach on the same platform. We demonstrate that in

the presence of malicious or buggy code that engages in a denial-of-service attack

directed against resources, KaffeOS-based systems can contain the attack, remove

resources from the attacked applications, and continue to provide robust service to

other clients.
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CHAPTER 1

INTRODUCTION

The need to support the safe execution of untrusted programs in runtime sys-

tems for type-safe languages has become clear. Language runtimes are being used

in many environments to execute untrusted code that may violate a system’s safety

or security. Current runtime systems implement memory protection in software

through the enforcement of type safety [9]. In addition, these systems provide secure

system services through a number of mechanisms, including language-based access

modifiers and a security model for granting access privileges to system services.

They do not, however, sufficiently isolate untrusted code and are unable to control

the computational resources used by such code. This dissertation presents KaffeOS,

a design for a Java virtual machine (JVM) that allows for the robust execution

of untrusted code. Like a hardware-based operating system that supports and

manages multiple processes running on one physical machine, KaffeOS provides

resource control and isolation to its processes within one virtual machine. KaffeOS

provides these features without compromising the memory safety and access control

existing systems already provide.

1.1 Motivation

To understand why memory safety and access control are insufficient to provide

a robust environment for untrusted code, one can consider the following application

scenarios that employ type-safe languages:

• With the advent of the World Wide Web, applets written in Java have become

popular. An applet is a piece of mobile code that is referenced from within

a web page. When a user visits that page, the code is downloaded to the

client’s machine, where it is executed using the client’s computing resources.
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There is no prior trust relationship between the originator of the code—who

could be a malicious attacker—and the client who executes the code. A

Java program’s highly structured bytecode representation can be verified to

ensure that the code will not compromise security on the client’s machine,

but it includes no defenses against denial-of-service attacks directed against

computing resources such as memory and CPU. Six years after Java was first

released to the public in 1995, industrial browsers still do not withstand even

the simplest of these attacks [58]. As a result, browsers stop responding to

user requests and, in some cases, even crash.

• Java has also become popular for many server-side applications. For instance,

servlets are small programs that provide dynamic content to users, such as

Java Server Pages [7]. Often, a server hosts many web sites from multiple

different content providers (virtual hosts). Even though a servlet’s code is

usually trusted, a buggy servlet in one virtual host could cause the servlet

engine to spend all its time collecting garbage and deny service to other

servlets that serve a completely different web site and a completely different

set of users.

• Active network technology [77] has emerged recently as an area that ap-

plies type-safe languages for networking protocol research and development.

Whereas traditional networks only support a small, fixed set of networking

protocols, support for active packets allows networks to be upgraded on the

fly. Networks can so adapt to new requirements posed by new applications.

These new protocols rely on the distribution and execution of customized

code in routers along a packet’s path. If this code is written in a type-safe

language such as Java, Java’s memory safety and its security model can be

leveraged. However, if the resources used by the code cannot be controlled

or if failing code cannot be contained, then it will be extremely unlikely that

network providers will deploy this new technology.
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• Oracle’s JServer environment [55] uses Java to support such popular server-

side technologies as Enterprise Beans (a Java-based component architecture

geared towards business applications), CORBA servers (an object-oriented in-

frastructure for client-server communication), and stored procedures in data-

bases. Since different sessions are able to share common data directly, systems

like the JServer are highly scalable and support thousands of simultaneous

sessions. However, they do not limit the resources a session can use, and

they do not fully isolate sessions. Isolating sessions is useful even when the

code running in them comes from trusted sources, because the code may be

buggy or insufficiently tested. Any system that addresses these problems and

provides resource control and isolation must allow for such direct sharing to

maintain scalability and efficient use of resources.

• A final example is the use of kernel extensions in extensible operating systems.

For instance, in the SPIN operating system [10], applications are allowed

to download extensions into the kernel to adapt the system to application-

specific needs. Because both the kernel and the extensions are written in

Modula-3, a type-safe language, these extensions’ access to kernel interfaces

can be controlled. However, it is impossible to control the resources used by

a given extension—for instance, to guarantee that one extension obtains a

certain share of CPU time.

To address these problems, all of these applications require a runtime system

that supports the following features:

• Protection: Protection includes confidentiality and integrity. Confidentiality

requires that an application must not be able to read another application’s

data unless permitted. Integrity requires that an application must not be

able to manipulate the data of another application or system-level data in an

uncontrolled manner, or destroy the data of another application.

• Isolation: Applications must be isolated from each other. One application’s

failure must not adversely affect other, unrelated applications or the system.
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• Resource management : First, resources allocated to an application must

be separable from those allocated to other applications to ensure proper

accounting. Second, resource management policies must guarantee that an

unprivileged or untrusted application is not able to starve other applications

by denying them resources.

• Communication: Since the system may include multiple cooperating applica-

tions, applications should be able to communicate with each other. For Java,

an efficient way of sharing data should be supported that does not compromise

protection and isolation.

Existing mechanisms such as type safety, language-based access control, and

permission checks provide protection—our research shows how to support the re-

maining three features. Others have developed a number of systems that provide

support for multiple, untrusted applications in Java during the last few years.

However, they all fall short of our requirements in one or more ways.

An applet context [16] is an example of an application-specific approach that

supports multiple applications on top of a single Java virtual machine (JVM). It is

implemented as a layer on top of the JVM and provides a separate namespace and

a separate set of execution permissions for untrusted applets. Applet contexts do

not support resource management and thus cannot defend against denial-of-service

attacks. In addition, they are not general-purpose: applet contexts are specific to

applets and cannot be used easily in other environments. Similar ad hoc layers

have been created for other application areas, such as servlets and mobile agents.

Ad hoc layers are unable to safely terminate the applications running in them;

attempts to terminate applications can cause corruption in other applications or in

the system’s critical components. Because of this potential for corruption, recent

Java systems do not support any way to forcefully terminate applications [75].

The general-purpose models for isolating applications in Java that do exist, such

as the J-Kernel [42] or Echidna [40], also fall short. They superimpose an operating

system kernel abstraction on Java without changing the underlying virtual machine.
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As a result, it is impossible in those systems to account for the often significant

resources spent by the JVM on behalf of a given application. For example, CPU

time spent while garbage collecting a process’s heap is not accounted for. Figure 1.1

depicts the basic structure of both ad hoc layers and superimposed systems.

An alternative approach to separating different applications is to give each

one its own virtual machine and run each virtual machine in a different process

on an underlying OS [47, 56], as shown in Figure 1.2. Most operating systems

can limit a process’s heap size or CPU consumption. Such mechanisms could be

used to directly limit an entire VM’s resource consumption, but they depend on

underlying operating system support. Depending on the operating system has

multiple drawbacks: the per-JVM overhead is typically high, and the flexibility

with which resources can be managed may be limited. For instance, a typical JVM’s

memory footprint is on the order of 1-2 MB, which can severely restrict scalability

on current machines. A JVM’s startup costs, which include the cost of loading and

linking the Java bytecode, are typically high. When different instances of a JVM

run on the same machine, they typically do not share any runtime data structures,

even on systems that provide support for shared memory. Finally, the option

of dedicating one JVM process to each application does not apply to embedded

or portable devices that may not provide OS or hardware support for managing

Base OS

App1 App2 App3 App4

JVM

Ad hoc layer

Figure 1.1. Single JVM model. In the single JVM model, applications run on top
of an ad hoc layer in one JVM.
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App1

JVM JVM JVM JVM

App App3 App4

Base OS

2

Figure 1.2. Multiple JVM model. In the multiple JVM model, each application
runs in its own JVM as a separate process on top of the underlying base operating
system.

processes [88].

Although we cannot directly rely on traditional operating systems to separate

different Java applications in their respective JVMs, our approach to providing

isolation and resource management exploits the same basic principles upon which

operating systems are built. On a traditional operating system, untrusted code

can be executed in its own process; CPU and memory limits can be placed on the

process; and the process can be killed if it is uncooperative. In such a process

model, a process is the basic unit of resource ownership and control; it provides

isolation between applications. A “classical” property of a process is that each

process is given the illusion of having the whole (physical or virtual) machine to

itself. Therefore, if runtime systems support such a process abstraction, they can

provide robust environments for untrusted code.

Compared to the alternative of using separate operating system processes to

provide isolation to each Java application, designing runtime systems to support

processes is a superior approach. First, it reduces per-application overhead. For

example, applications can share runtime code and data structures in much the same

way that an OS allows applications to share libraries.

Second, communication between processes can be more efficient in one VM.

Processes can share data directly through a direct memory reference to a shared
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object. Direct sharing is more efficient than exchanging data by copying it or

sharing it indirectly through intermediate proxy objects. One of the reasons for

using type-safe language technology in systems such as SPIN [10] was to reduce the

cost of interprocess communication; this goal is one we want to keep. Therefore,

supporting direct sharing of objects for IPC purposes between multiple processes

in one VM is important.

Third, a JVM that does not rely on underlying operating system support can be

used in environments where such support is missing. For example, such a JVM could

be used on a portable or embedded device that may only have a minimal operating

system, especially one that is not powerful enough to fully isolate applications.

In other work, we have shown that a single JVM uses less energy than multiple

JVMs on portable devices [35]. Finally, because an OS’s protection mechanisms are

typically process-oriented, it is also difficult (or impossible) to rely on OS support

when embedding a JVM in an existing application, such as a web server or web

browser.

1.2 KaffeOS

The structure of our system, KaffeOS, is depicted in Figure 1.3. By adding a

process model to Java, we have constructed a JVM that can run multiple untrusted

App1 App App3 App4

Base OS

2

KaffeOS JVM

Figure 1.3. KaffeOS model. By supporting multiple processes within the JVM
itself, KaffeOS achieves both the efficiency and ease of sharing of the single JVM
model and the isolation provided by the multiple JVM model.
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programs safely and still supports the direct sharing of resources between programs.

A KaffeOS process is a general-purpose mechanism that can easily be used in

multiple application domains. For instance, KaffeOS could be used in a browser

to support multiple applets, within a server to support multiple servlets, or even

to provide a standalone “Java OS” on bare hardware. We have structured our

abstractions and APIs so that they are broadly applicable, much as the OS process

abstraction is.

KaffeOS can terminate processes safely if they misbehave, fail, or exceed their

resource limits. KaffeOS protects components that are essential to the integrity of

the system by including them in a trusted kernel within the JVM. Safe termination

is achieved by separating processes from the kernel and by structuring the kernel

such that it is protected from corruption due to abrupt termination.

KaffeOS uses three different approaches for direct sharing of objects between

processes. These approaches represent different points in the spectrum spanned

by the conflicting goals of process isolation and resource management versus di-

rect sharing. KaffeOS does not support the casual sharing of arbitrary objects

between untrusted parties, because doing so would compromise isolation. However,

untrusted parties can share dedicated objects in specially created shared heaps.

Shared heaps are subject to a restricted programming model so as not to compro-

mise isolation. Finally, the sharing of kernel objects, which provide shared services,

is possible without restrictions.

Our design makes KaffeOS’s isolation and resource control mechanisms compre-

hensive. We focus on the management of CPU time and memory, although other

resources such as network bandwidth or persistent storage could be added in the

future. The runtime system is able to account for and control all of the CPU and

memory resources consumed on behalf of any process. We have dealt with these

issues by structuring the KaffeOS virtual machine so that it separates the resources

used by different processes as much as possible.

We paid particular attention to memory management and garbage collection,

which proved to be the issues that posed the largest challenges in designing KaffeOS.



9

We have devised a scheme in which the allocation and garbage collection activities

of different processes are separated, so that the memory consumption a of different

process can be separately accounted for and so that the garbage collector does

not become a source of priority inversion. This scheme borrows from distributed

garbage collection techniques; however, instead of managing objects and collecting

garbage across multiple, physically separated machines, we use it to manage objects

across multiple processes within one JVM and to separately garbage collect their

objects.

To evaluate the feasibility of KaffeOS’s design, we have built a prototype and

analyzed its behavior in various application scenarios. In the case of trusted code,

there is a small performance penalty for using KaffeOS. We show that this penalty

is reasonable; the total observed run-time overhead is less than 8%, relative to the

freely available JVM on which our prototype is based.

We also examined our prototype’s behavior when confronted with denial-of-

service attacks by malicious code, if these attacks are directed against memory,

CPU time, or the garbage collector. We found that KaffeOS can successfully thwart

those attacks. As a consequence, a system based on KaffeOS can provide robust

service to well-behaved applications even in situations in which otherwise faster

commercial JVMs break down to the point of providing practically no service at

all. We also compared KaffeOS to a configuration that is based on the multiple JVM

model and found that KaffeOS’s performance scales better. In our experiments, our

prototype can support more processes while providing the same protection against

misbehaved applications as an underlying operating system.

Finally, we evaluated the practicality of our programming model for shared

heaps. We found that despite the restrictions our model imposes to maintain

isolation, applications can easily and directly share complex data structures in

realistic applications.

In summary, we claim that by combining operating system mechanisms with

garbage collection techniques, runtime systems for type-safe languages can be struc-

tured to implement isolation and resource management. KaffeOS implements a
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process model for Java that isolates applications from each other, provides resource

management mechanisms for them, and also lets them share resources directly.

However, the mechanisms we describe are not specific to Java and should be

applicable to other type-safe languages as well.

Therefore, we put forth the thesis that runtime systems for type-safe languages

can be extended to employ a process model that provides robust support for

untrusted applications. Such a process model can be implemented efficiently using

software mechanisms to provide both application isolation and direct sharing of

resources.

1.3 Roadmap

In Chapter 2, we review some Java properties that are necessary to comprehend

the discussion in the following chapters.

In Chapter 3, we discuss the principles underlying KaffeOS’s design, and how

they influenced the mechanisms we implemented. In particular, we discuss how

KaffeOS reconciles the divergent needs of application isolation and sharing of re-

sources and how it controls the resources used by its processes.

In Chapter 4, we discuss the implementation of our prototype. This discussion

includes the structure of the kernel, the algorithm used by the garbage collection

subsystem, and the language issues involved in using Java namespace in a multi-

process environment.

Chapter 5 discusses the performance of our prototype, which includes both the

overhead for trusted code and the performance improvement in the presence of

untrusted code. Chapter 6 provides an in-depth discussion and comparison with

related work. Chapter 7 suggests some directions for future work and summarizes

our conclusions.



CHAPTER 2

THE JAVA PROGRAMMING LANGUAGE

The Java programming language is a concurrent, type-safe, class-based, and

object-oriented language. It was born out of a project called Oak led by James

Gosling at Sun Microsystems during the early 1990s. Originally intended as a

programming language for set-top boxes, Java quickly became a general-purpose

language that is used in a variety of applications. We chose Java as a base, because

it is representative of a family of programming languages whose goal it is to make

programming less error prone and to make programs more robust.

2.1 Language Overview

Java’s syntax and procedural style were taken from C/C++. It uses the same

control structures, same expressions, and similar primitive types and operators.

However, Java is stricter in defining the behavior of types and operators. For

example, unlike C, Java specifies the signedness and range of every primitive data

type to ensure that a Java program has the same meaning on different platforms.

Objects : The basic unit of code is a Java class, which can contain fields and

methods. As in C++, fields are either per-instance or (global) static fields. Java

supports subclassing through single class inheritance. Polymorphism is provided

through the use of virtual methods. Unlike C++, Java supports neither nonvir-

tual, nonprivate methods nor code outside of classes, which forces a more strict

object-oriented style of programming. In addition, Java supports subtyping through

interfaces. An interface is a collection of method declarations that an implementing

class must provide. A class can inherit from only one base class, but it can

implement an arbitrary number of interfaces. By disallowing fields in interfaces,

Java avoids the difficulties associated with multiple inheritance.
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Packages : Java classes are grouped in packages, which are roughly comparable

to C++ namespaces. Packages are named in a hierarchical fashion. For instance, all

classes that are part of the runtime library are found in the java.* hierarchy, such

as java.lang.String for basic functionality such as Strings or java.net.* for the

set of classes that provide access to standard network facilities such as sockets.

Type safety : Java is a type-safe language; Java programs cannot arbitrarily ac-

cess the host computer’s memory. All memory is tagged with its type, each of which

has a well-defined representation. Java does not use pointers. Instead, objects are

accessed using references, which cannot be cast into or from any primitive type, such

as an integer. Arrays are first-class objects, and all accesses are bounds-checked.

These properties avoid the pitfalls associated with pointer arithmetic.

Java’s memory management is automatic. The programmer is relieved from

the burden of having to explicitly manage memory. Instead, a garbage collector

determines which objects the program is able to access in the future; it reclaims

those objects that can not be accessed on any legal execution path. Consequently,

there are no crashes due to dangling references that point to already freed memory.

Note, however, that memory leaks can occur if references to objects remain stored

unintentionally. Java allocates all objects on the heap—there are no locally declared

static objects as in C++. This design avoids the complications associated with

copy constructors and destructors in C++. Instead of destructors, Java supports

finalization of objects. Objects can provide a finalize() method that is exe-

cuted once the object has become unreachable but before its memory is reclaimed.

Finalize methods can be used to free system resources, such as sockets, that may

be associated with a Java object.

Language access modifiers : Java supports information hiding using access mod-

ifiers. Each class, method, or field can be marked with either private, protected,

public or can have no modifying prefix at all. Private asserts that a field or method

can be accessed only from within its class. Protected fields and methods are

accessible to subclasses, and public fields and methods are accessible from anywhere.

In the default case, a field or method can be accessed only from classes within the
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same package as its class.

Access modifiers are enforced at runtime. Consequently, access to critical fields

can be effectively protected by declaring them private. The flexibility of language

access modifiers is limited, because there is no feature similar to C++’s friends

that allows a class to grant access to a specific class or method. Therefore, accesses

from outside the current package require that the data or method be public, which

makes it accessible to all packages. Run-time checks are then required to determine

whether the caller has sufficient privileges to perform the requested operation.

Exception handling : Java exceptions are used to signal errors that occur during

program execution. Java adopted C++’s try/catch model for exceptions. If an

exception is raised within a try block, execution branches abruptly from the current

instruction to the corresponding catch clause for that exception. If there is no

matching clause, the method terminates abruptly, and the exception is thrown

in the caller. In this way, exceptions propagate up the call stack until either a

matching catch clause is found or there are no more stack frames. Unhandled

exceptions terminate the current thread.

An exception can be raised in different ways: either directly by executing a

throw statement or indirectly as a side effect of executing a bytecode instruction or

runtime operation. For instance, any array store instruction can throw an exception

if the array index is out of bounds. Similarly, attempts to dereference a null pointer

result in a null pointer exception. Some runtime operations can be interrupted on

request; such interruption is also signaled via an exception.

There are two groups of exceptions: checked exceptions, which an application

is expected to handle if they occur, and unchecked exceptions, from which an

application is not expected to recover. Every method must declare the checked

exceptions it can throw. The compiler checks that any caller of a method that

can throw an exception is prepared to handle it—either by supplying a compatible

catch clause or by declaring the exception itself. The rationale behind this rule is to

avoid a common pitfall in languages such as C, where programmers tend to forget

to check return codes for error conditions.
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Unchecked exceptions need not be declared. Java’s designers judged that having

to declare such exceptions would not significantly aid in establishing the correctness

of the code and would pointlessly clutter code ([49], §11.2). In addition, it would

be difficult or impossible for a program to recover from them. An example of such

an exception that is hard to recover from would be a loading error that occurs if

parts of the program code cannot be loaded. Note that code in critical parts of the

runtime system must handle all errors, including those errors that signal resource

exhaustion, such as out-of-memory errors. Consequently, such code may not be

able to take significant advantage of Java’s exception checking rules.

Concurrency : Java is a concurrent language with built-in support for multi-

threading. Programs can create new threads simply by instantiating an object of

type java.lang.Thread. Threads have their own stacks for their local variables,

and share data through objects on a common heap. Two kinds of synchronization

are supported: mutual exclusion and unilateral synchronization. Mutual exclusion

is provided through the synchronized keyword, which encloses blocks of code in

a critical section that can be entered only by one thread. In addition, methods

can be declared synchronized, which is equivalent to enclosing the entire method

body in a synchronized block. Java’s concurrency mechanisms do not prevent

unsynchronized accesses to shared variables [41]; consequently, race conditions can

occur. Unilateral synchronization is provided in a POSIX-like wait/notify style [46];

every object inherits a wait() and a notify() method, and therefore every object

can be used as a condition variable.

Every object to which a program holds a reference can be used as a lock when

it occurs as an argument to a synchronized clause. This feature can, however,

cause problems when public fields of critical objects are used for synchronization.

For instance, in an early version of the HotJava browser, an applet could effectively

halt all activity in the browser by acquiring and not releasing a lock on its status

bar object. Other applets and the system would get stuck as soon as they tried to

display any messages in the browser’s status bar.

Terminating uncooperative threads is not safe in current versions of Java. To
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understand this problem, it is useful to look at the history of Java threads [75]. The

original Java specification provided a method called Thread.stop() to stop threads.

This method caused an exception to be thrown in the targeted thread’s context.

This asynchronous exception was handled like any other run-time error, in that

locks were released while unwinding the stack. Later, JavaSoft realized that this

procedure could lead to damaged data structures when the target thread holds locks.

In particular, data structures vital to the integrity of the runtime system could be

left in inconsistent states. As a result, JavaSoft deprecated Thread.stop().

A later proposal for termination was also flawed. A different mechanism for

termination, Thread.destroy(), was proposed by Sun that would have terminated

a thread without releasing any locks it held. This proposal had the potential for

deadlock, and JavaSoft never implemented it. There is currently no supported

mechanism to ensure atomicity in the presence of asynchronous termination.

Native libraries : In many circumstances, it is necessary to interface Java code

with code in other languages, usually C or assembly code. To access such code,

Java allows methods to be declared native, i.e., as having an implementation in

non-Java code. Since C code cannot be shown to maintain Java’s safety properties,

only trusted classes can have native code, although some systems have tried to

avoid that restriction by placing the code in a different operating system pro-

cess [24]. However, such approaches require each native call to use interprocess

communication mechanisms.

Writing native code requires close cooperation with the JVM’s garbage collector.

The code must ensure that objects that are kept alive by native code are found by

the collector. Two approaches are possible: a conservative collector can scan the

data segment of the entire program and keep all objects that could be referenced

alive, or the code is required to explicitly register and unregister references it needs

to be kept alive. The latter approach is chosen in the Java native interface (JNI)

specified by Sun Microsystems [53]. Native code is allowed access to Java objects

only through a well-defined interface, which includes such operations as getting or

setting fields in an object. This interface allows the JVM to closely monitor all
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operations done by native code that are relevant to the garbage collector.

2.2 The Java Virtual Machine

A Java compiler translates Java programs into bytecode that is targeted at

the Java virtual machine. Java bytecode provides the basis for Java’s portability,

because the same bytecode can be executed on all platforms that provide an

implementation of the Java virtual machine.

Java uses late binding—Java bytecode is loaded and linked at run time. Code

can be loaded from a filesystem or from user-specified sources such as web servers.

After the bytecode is loaded, it is checked by a verifier before being linked. If the

verification is successful, the bytecode is executed. Java bytecode can be executed

by an interpreter, or it can be translated into native code by a just-in-time compiler

(JIT) first, as illustrated in Figure 2.1. Most JVMs today employ JIT compilers;

interpreters are typically used only where the space and complexity overhead of

JIT compilation is not tolerable, such as in small or embedded systems. To avoid

the overhead of JIT compilation for code that is executed only rarely, some VMs

use an adaptive technique that interprets code first and translates those pieces that

are invoked frequently during the execution of the program.

The Java virtual machine is a simple, stack-based virtual architecture that

provides storage for the heap and each thread’s stack and registers, and a CPU

to execute bytecode instructions. Local registers, object fields, and static fields can

be pushed on and popped off the stack. All arithmetic and logical operations are

performed on stack elements; their results are also stored on the stack.

Bytecode verification: Bytecode verification ensures that the bytecode maintains

the same safety properties that are present in the source language. Java bytecode

is designed such that the Java runtime can verify its consistency and therefore

need not trust the bytecode compiler to produce proper code. This property allows

the use of Java bytecode in mobile code environments. A client can check safety

properties of the code without access to the source code.

Bytecode instructions are strongly typed, so that the bytecode verifier is able to

verify whether the type of the operands matches the expected type. For instance,
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Bytecode (.class)

Interpreter JIT Compiler

Web Page (.html)

Java Source (.java)

Compiler (javac)

Run Time

Compile Time

Verifier

Classloader

Figure 2.1. Java compilation and execution. In a typical scenario, Java source
code, such as applet code, is first compiled into an intermediate representation
called bytecode. This bytecode is embedded in webpages. A class loader that
is part of the client’s browser loads the bytecode, passes it on to the verifier for
verification. The code is either interpreted or compiled to native code before being
executed.

the bytecode instruction to add two doubles (DADD) is different from the instruction

to add two ints (IADD). If an instruction requires a given type, the virtual machine

has to make sure that a given local register or stack location contains a value

of that type. The bytecode verifier ensures that this property holds no matter

which execution path is taken to reach a given instruction. The verifier proves this

property using simple dataflow analysis. Figure 2.2 provides a simple example.

Class loading : Java’s class loading mechanism provides four major features:

lazy loading, multiple namespaces, user-defined loading policies, and type-safe
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class A {
static A a;
B b;
void f(B x) {

a.b = x;
}

}

Method void f(B)
0 getstatic #5 <Field A.a A>
3 aload_1
4 putfield #6 <Field A.b B>
7 return

Figure 2.2. Example of Java bytecode. The right side contains a disassembled
listing of bytecode produced by the Java compiler for the A.f method shown on
the left. The getstatic instruction loads the static field A.a onto the stack. The
method’s argument, x, is kept in local register #1; the aload 1 instruction pushes
x on the stack. putfield operates on the stack operands and assigns the value of
x to the field labeled b in A.a. Simple dataflow analysis tells the virtual machine
that the value stored in A.a is indeed of type B.

linkage [54]. Lazy loading postpones class loading and linking until a class’s first

use; users can define class loaders to provide their own loading policies and define

multiple namespaces. The JVM ensures that the linking process cannot be used to

bypass Java’s type-safety guarantees.

A class loader is an object that serves requests for class objects. A class object1

is a runtime representation of a type. Each class object is tagged with the loader

that loaded it. The VM maintains a mapping

(class loader, class name) → class object

All class objects that have a loader in common form a namespace, for which the

common loader acts as name server. Class objects with the same name that are

loaded by different class loaders constitute different types: attempts to cast one to

the other fail.

Multiple namespaces can be created by instantiating multiple class loaders.

Supporting multiple name spaces is necessary for applications such as running

1Note that the term class is typically used for both the runtime class object and the syntactic
class construct at the source code level.
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applets from multiple sources in a browser, because there is no prior coordination

between the different developers as to how to name their classes.

Class loaders define class objects by presenting a sequence of bytes in class file

format to the JVM. The JVM parses and verifies the contained bytecode, establishes

a new runtime type, and returns a reference to the new class object. The loader

that defines a class is said to be that class’s defining loader. Class files contain

both a class’s bytecode and symbolic information necessary to resolve interclass

references.

If a class contains symbolic references to another class, the runtime system

initiates the loading process of the referred class by requesting a class object

from the referring class’s defining loader. The initiating loader can either load

the necessary class file itself, or it can in turn invoke another class loader to resolve

the reference. This process is known as delegation [54]. Since the Java type is

determined by the defining loader, delegation allows different class loaders to share

types by delegating them to a common loader. One example is the system class

loader, to which all loaders refer for system classes.

Because a class loader is a user-defined object, it has full control over the location

from where class files are loaded. Ordinarily, class files are loaded from a local

file system. A class loader can implement other options: for instance, a loader

in a mobile agent system could load class files over the network from an agent’s

originating host. Some systems even create class files on the fly from other source

languages, such as Scheme [15]. Class loaders can also restrict their classes’ access to

other classes by refusing to return an answer for a requested name. This mechanism

can be used to enforce a crude form of access control.

Type-safe linkage: The virtual machine must guarantee type safety, even in

the presence of class loaders that do not return consistent answers when asked for

names. For instance, a class loader should return the same runtime class when

queried for the same name. The JVM must be able to cope with user-defined

loaders that violate this invariant. An insufficient understanding of the consistency

assumptions made by the JVM compromised type safety in early JVM implemen-
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tations. Ill-behaved class loaders were able to bypass language access modifiers or

could even cause the JVM to crash. These vulnerabilities were fixed by defining and

enforcing a set of constraint rules on the classes a loader defines [54]. For instance,

one rule states that if a class references a field declared in a class that was defined

by a different loader, then that field’s type must have the same definition in both

loaders’ namespaces. If a loader attempts to define a class that would violate such

constraints, a linkage error is raised.

Security model : Java’s security mechanisms defend against threats that can arise

from untrusted code, such as the possibility of system modification or corruption or

leakage of sensitive information that could violate a user’s privacy. Untrusted code

is prevented from performing operations such as writing to or deleting local files or

directories, or reading from files and sending their contents over the network.

The Java security model associates principals with code and controls access to

resources such as files and sockets. Code that originates from the same source is

considered to belong to the same principal and is given equal privileges.

Java’s designers have tried to separate security mechanisms and policies by

centralizing policy decisions in one location in the runtime system. Early versions

of Java used a SecurityManager object for that purpose. Runtime classes consulted

the security manager whenever an access control decision was to be made. If the

attempted operation was disallowed, the security manager vetoed it by raising a

SecurityException. The first policy implemented using security managers was

the sandbox policy. The sandbox policy is an all-or-nothing approach: code from

untrusted sources is sandboxed and has no privileges, and trusted code has all

privileges. The security manager bases its decision on whether to allow a sensitive

operation to proceed on the call stack of the current thread: if any activation record

belongs to untrusted code, the operation is disallowed.

Because this approach was too inflexible, later versions of Java replaced it with

an approach that does not require a security manager but supports making access

control decisions directly in the VM. Classes are placed in different protection do-

mains, and each domain possesses a set of permissions. When an access control deci-
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sion must be made, the JVM examines the call stack and determines the protection

domains in the current thread’s call chain. Unlike in the security manager model,

the JVM obtains the effective set of permissions by intersecting the permissions

held by the domains that are part of the call stack. This algorithm implements

the principle of least privilege: it prevents lower-privileged code from acquiring

privileges by calling into higher-privileged code, and it requires higher-privileged

code to effectively give up its permissions when calling into lower-privileged code.



CHAPTER 3

DESIGN OF KAFFEOS

Our discussion of the goals and decisions behind KaffeOS’s design is split in

four sections: first, we describe how we applied lessons from operating systems to

protect and isolate processes in KaffeOS and how we guarantee safe termination

of its processes. In the second section, we focus on the design of the memory

management subsystem and explain how KaffeOS separates garbage collection

activities. The third section is dedicated to sharing models: we discuss the trade-off

between sharing and isolation, outline the possible design space for sharing models,

and present KaffeOS’s sharing model. In the final section, we describe KaffeOS’s

hierarchical resource management model for memory and CPU resources.

3.1 Protection and Isolation

Protection is a core function of any operating system. An operating system

needs to protect the integrity of shared resources and control access to them. An

operating system must also provide isolation for its processes, i.e., it must isolate

their activities as much as possible to uphold the illusion that each process has

the whole machine to itself. We discuss the different aspects of protection and

isolation and show how operating systems provide these features. We then apply

this discussion to show how we provide protection and isolation in KaffeOS.

3.1.1 The Red Line in Operating Systems

Many operating systems use a model in which processes can execute in two

different modes, user mode and kernel mode, which are represented by a bit in

a CPU register. In user mode, a process executes user code. User code may not

access any memory or I/O ports outside the current process’s address space. It also
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cannot execute the privileged instructions needed to change the bit that indicates

the current mode. This mechanism protects the kernel and other applications

from malicious or buggy applications by preventing them from corrupting kernel

or application data. If user code attempts to execute illegal instructions, a trap

instruction enters the kernel, which can terminate the offending process safely.

When a process needs to access kernel data, the process enters kernel mode by

executing a trap instruction, which transfers execution to kernel code. Kernel code

is trusted and has full access to all memory, all I/O ports, and all instructions.

Protection is the main function of the user/kernel boundary, which is also often

colloquially referred to as the “red line” [20]. However, the red line serves several

other functions: it enforces resource control and provides safe termination.

The user/kernel boundary is necessary to enforce resource control. A process

running in user mode is subject to policy limitations on the resources that it can

consume. The kernel, on the other hand, has access to all of the physical resources

of the machine and enforces resource limits on user processes. For example, only

the kernel can disable interrupts, which prevents processes other than the current

process from running on the process’s CPU. In most systems, the kernel is directly

responsible for scheduling processes, which controls how many CPU cycles processes

are allowed to consume. Similar restrictions apply to the use of memory: a process

may use only the memory provided to it by the kernel.

Changes to resource allocations are done by entering the kernel. For example,

UNIX processes use the sbrk system call to request a change in the amount of

memory available to them. Some operating systems (such as exokernel systems [34])

move resource management to user level. Even in such systems, the kernel is

responsible for providing the mechanisms for enforcing a given policy.

Kernel code must be written with resource control in mind. For instance, should

an attempted kernel operation exceed a user process’s resource limit, the kernel

must be able to either gracefully reject the operation or terminate that process

safely. The kernel must be structured so that a resource control violation does not

cause abrupt termination that endangers the integrity of the kernel itself, because
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that could affect the integrity of other applications (which would violate isolation).

Aside from a resource control violation, a process can also be terminated because

of an internal failure condition or because of an explicit request.

No matter why a process is terminated, the integrity of the system must not

be harmed. Of course, the system cannot guarantee that processes that depend on

the terminated process will continue to function, but it must ensure that unrelated

processes are unaffected. Integrity must be preserved by ensuring that globally

shared data structures are modified atomically, which is accomplished by enclosing

those data structures in the kernel. The system’s integrity must be maintained

even when processes exceed their resource limits while manipulating kernel data

structures and have to be terminated as a consequence.

Most operating systems provide a mechanism to defer explicit termination re-

quests. Usually, this is a software flag that is set when a nonterminable region is

entered and cleared when it is left. In traditional operating systems such as Unix,

the nonterminable region encompasses the complete kernel. That is, crossing the

red line enters code in which termination requests are deferred.

3.1.2 Language-based Protection and the Red Line

Java’s type safety and language-based access control provide language-based

protection without a red line. KaffeOS employs these mechanisms to prevent a

process from accidentally or intentionally accessing another process’s data. This

property is enforced by several mechanisms, which work together. First, Java’s type

safety guarantees that programs cannot forge pointers to obtain access to foreign

objects. A process cannot access arbitrary memory locations by casting an integer

to a pointer. It can access only valid objects to which it holds references.

Second, system code uses Java’s access modifiers, such as private and protected,

to prevent processes from accessing fields in system objects to which they have

access. (We assume that Java’s type system is sound and that Java’s bytecode

verifier functions properly.)

Third, different processes use distinct classloaders. Each classloader provides a

namespace with a distinct set of types; the details of the interaction of KaffeOS’s
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processes and types are discussed in Section 4.2. If a process were somehow able to

get hold of an object in another process, attempts to access it would result in an

exception, because the object’s runtime class would not be recognized in the rogue

process.

Fourth, we trust system code not to hand out references to a foreign process’s

objects or to internal system objects. Although we cannot guarantee these prop-

erties, the damage caused by violating them is limited, because language access

modifiers and different namespaces restrict possible use of such leaked objects.

Another reason why the system must not expose certain internal objects is that

Java allows any object to be used as a monitor. We must avoid a scenario in

which a user process could acquire a lock on an object that is used internally for

synchronization, hold on to it indefinitely, and possibly prevent other processes

from making progress. In such a scenario, the system would hand out references to

an internal thread control object, which system code uses internally to synchronize

such thread operations as exiting a thread or joining other threads. If a process

could acquire a lock on that object, it could prevent these thread operations from

completing and possibly prevent itself or other processes from terminating.

Cases in which system objects that are used for synchronization are exposed

are bugs. Experience with our implementation indicates that these bugs can often

be detected during testing by the deadlocks they cause. These deadlocks occur if

a thread is terminated while locking a system-level object. Since the object’s lock

is not released, all threads will eventually block on that object, which causes a

detectable deadlock.

All of the protective measures mentioned so far can be implemented by employ-

ing existing mechanisms in Java. Consequently, in KaffeOS, we do not need a red

line for protection. However, the red line is still needed for proper resource control

and safe termination.

Proper resource control in Java requires a user/kernel distinction, because cer-

tain parts of the Java system must be written either to have access to all of the

physical resources, or not to require memory allocation, or to be prepared if a
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memory allocation fails. For example, the exception handling code in the Java

runtime must not depend on the ability to allocate heap memory, since the inability

to acquire memory is signaled via an exception. The developers of Java failed

to distinguish those parts of the system that should be subject to policy-defined

resource limits from those that should always have access to all of the physical

resources. As a result, applications such as servlet engines fail fatally on current

JVMs if they run out of resources in code that manipulates shared data structures,

especially those structures whose consistency is critical to the functioning of the

application. Such failures can be prevented by introducing the red line, which must

protect such data structures, and making sure that code inside the kernel does not

abruptly terminate when a process exceeds resource limits.

The integrity of critical data structures must also be preserved if a process is

terminated by request—for instance, if a user wishes to kill an uncooperative or

stuck process. This safety can be provided by ensuring that all manipulations

of critical data structures are done in an atomic fashion. The red line provides

this atomicity by deferring termination requests while such data structures are

manipulated. To protect these data structures and to ensure correctness, Java

runtime systems must draw a red line to encapsulate those parts of the Java run-

time libraries in which threads must not be terminated. Mechanisms must be

present to prevent abrupt termination in this code. By contrast, threads executing

in user code can be terminated at will. The usefulness of the red line as a structuring

principle does not depend on a specific JVM implementation; it can and should be

applied to all JVMs that support multiple applications.

Deferring termination to protect data structure integrity is superior to the

possible alternative of supplying cleanup exception handlers. In the alternative

model, a termination request would be delivered as an exception, and catch clauses

would be added as cleanup handlers. Cleanup handlers in the form of catch clauses

have a slightly lower cost than deferring termination in the common case, but

programming them is tedious and error prone. (See Appendix A for an illustrating

example.) In addition, Marlow et al. [57] have pointed out that the use of catch
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clauses can create race conditions.

Another alternative solution, put forth by the Real-Time Java proposal [14],

would be to defer termination requests during synchronized sections. However, this

alternative would also be problematic, because deferring termination is indepen-

dent of synchronization. As discussed in Section 2.1, the synchronized keyword

is intended to protect a data structure’s consistency in the presence of concurrent

access, not in the presence of termination. Equating these two concepts leads to

decreased parallelism, higher potential for deadlocks, and confusing code, because

programmers are then forced to use synchronization on objects that are clearly not

shared with any other thread, just to prevent termination. In addition, termination

would be unnecessarily deferred even when the synchronization object is not shared.

Defining the red line to protect the integrity of the system does not make

asynchronous exceptions a usable programming tool for multithreaded applications,

because it does not protect user data structures from corruption that is caused by

abrupt termination. If untrusted user code were allowed to enter kernel mode, it

could delay termination indefinitely. Hence, such applications must still rely on

cooperation to know when it is safe to stop their own threads; they must ensure

that their data structures are kept consistent when threads are stopped.

3.1.3 The User/Kernel Boundary in KaffeOS

Figure 3.1 illustrates the high-level structure of KaffeOS. User code executes in

“user mode,” as do some of the trusted runtime libraries and some of the garbage

collection code. The remaining parts of the system must run in kernel mode to

ensure their integrity. These parts include the rest of the runtime libraries and

certain parts of the virtual machine, such as the garbage collector or the just-in-time

compiler. A piece of code executes in kernel mode if and only if it accesses globally

shared data structures. Such a structure echoes that of exokernel systems [34],

where system-level code executes as a user-mode library. A language-based system

allows the kernel to trust user-mode code to a great extent, because bytecode

verification ensures that language access modifiers such as “private” or “protected”

are respected at run time. Often, kernel mode is entered at the beginning and
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Figure 3.1. User/kernel boundary in KaffeOS. System code, which includes the
kernel, the runtime libraries and the garbage collector, can run either in kernel or
user mode; such code enters kernel mode where necessary. By contrast, user code
always runs in user mode. In user mode, code can be terminated arbitrarily; in
kernel mode, code cannot be terminated arbitrarily. The bottom part of the figure
shows that the trust dimension is orthogonal to the user/kernel mode dimension.

left at the end of a public method; methods called from that method assume (and

assert() where appropriate) that they are called in kernel mode. We present

concrete examples in Section 4.1.

Unlike in a hardware-based OS, user mode and kernel mode in KaffeOS do not

indicate different protection domains. In particular, KaffeOS’s use of the red line

does not prevent user objects from directly accessing shared objects. Instead, user

mode and kernel mode in KaffeOS indicate different environments with respect to

termination and resource consumption:
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• Resources consumed in user mode are always charged to a user process and

not to the system as a whole. Only in kernel mode can a process consume

resources that are charged to the kernel, although typically such use is charged

to the appropriate user process.

• Processes running in user mode can be terminated at any time. Processes

running in kernel mode cannot be terminated at an arbitrary time, because

they must leave the kernel in a clean state.

The KaffeOS kernel is structured so that it can handle termination requests and

exceptional situations that are caused by resource exhaustion cleanly. Explicitly

issued termination requests are deferred, but kernel code must also not abruptly

terminate due to exceptions. We achieve this goal by adopting a programming style

that mostly avoids exceptions and uses explicit return code checking instead. This

style has the advantage of being equally applicable to both code written in Java and

in languages that do not support exceptions, such as C. In addition, it reduces the

requirement that the exception handling facilities in the runtime system themselves

do not terminate abruptly. Other than through testing, we do not currently have a

means to verify that our kernel implementation follows these principles. We discuss

the possible use of static analysis as future work in Section 7.1.1.

In some situations, kernel code has to call out to user code. When making

such upcalls, kernel code must be prepared for the user code to take an unbounded

amount of time, or not to return at all, or to complete abruptly. The thread

executing the upcall cannot hold on to system-level resources that may be needed

by other processes prior to making the call. Other than through visual inspection,

we do not currently have a means to ensure that. For some resources, we could

check this property at run time, but it would be hard to do in general unless we

kept track of every lock a thread holds. This bookkeeping would incur an overhead

that would nullify the performance benefits of fast locking algorithms, such as thin

locks [2].
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3.2 Memory Management in KaffeOS

Each process is given its own heap on which to allocate its objects. In addition,

there is a dedicated kernel heap on which only kernel code can allocate objects.

A heap consists of a memory pool, i.e., a set of memory pages, that is managed

by an allocator and a garbage collector. Processes can allocate memory from their

heaps without having an impact on other processes, and, as importantly, they can

garbage collect their heaps separately. Separated heaps have been used in other

contexts before. For instance, multiprocessor memory allocators such as Hoard [6]

use per-CPU heaps to reduce lock contention and increase concurrency. By contrast,

we use them for resource separation and accounting.

Our goal is to precisely and completely account for the memory used by or on

behalf of a process. Therefore, we account not only for objects at the Java level but

for all allocations done in the VM on behalf of a given process. For instance, the VM

allocates data structures during the loading and linking process for a class’s symbols

and range tables for exception handling. On the other hand, bytecode-rewriting

approaches, such as JRes [22, 25], can account only for object allocations, because

they do not modify the virtual machine.

Kernel interfaces are coded carefully such that memory that is used on behalf of

a process is allocated on that process’s heap. When one considers, for example, the

creation of a new process with a new heap; the process object itself, which is several

hundred bytes, is allocated on the new heap. The handle that is returned to the

creating process to control the new process is allocated on the creating process’s

heap. The kernel heap itself contains only a small entry in a process table.

As a matter of design, we try to map all logical resources to memory. This design

has the advantage that we need not apply resource limits to logical resources, but

only to memory. For example, a hardware-based operating system needs to apply

limits on the number of files a process can have open at any given point in time.

This limit is necessary because each file descriptor occupies kernel space and is

therefore not subject to its process’s heap limits. By contrast, KaffeOS does not

need extra limits for system objects such as open files, because it can allocate them
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completely on user heaps.

Although we would like to map all logical resources to objects that can be

reclaimed via garbage collection, some resources require explicit deallocation (e.g.,

Unix network sockets must be closed using the close(2) system call to signal the

end of the connection to the other party). In KaffeOS, such resources are always

associated with trusted system objects. Those objects must register reclamation

handlers with the kernel, which are executed upon a process’s exit.

3.2.1 Full Reclamation

As in any operating system, all memory used by a process must be reclaimed

when a process exits or is terminated. Memory must be reclaimed without sac-

rificing type safety, which implies that dangling pointers must not be created.

Therefore, no foreign references must point to objects on the terminated process’s

heap, so that the garbage collector can fully recover a terminated process’s objects.

Such situations could potentially occur for two reasons: either because an object

in a foreign process inadvertently acquired a reference or because two processes

cooperated maliciously. The former case could occur if, for instance, we were to

lazily allocate a runtime class object on a user heap and then attempted to refer

to that class object later from a different process. In the malicious case, a process

would pass a reference to one of its own objects to another process that outlives

the process passing the reference. We refer to the latter case as a sharing attack.

In Java’s execution model, an object can be referenced in one of three ways:

either from another object on the heap, from a machine register, or from a thread’s

stack. Consequently, for a process’s objects to be fully reclaimable, they must not

be referenced from either another heap or a foreign thread’s stack or registers. We

discuss heaps in this section; an exhaustive discussion of how we treat references

from thread stacks and registers is presented in Section 3.2.2.

To prevent cross-references from foreign heaps, we monitor writes to the heap.

We use write barriers [87] for that purpose. A write barrier is a check that happens

on every write of an object reference into the heap. As we show in Section 5.1,

the cost of using write barriers, although non-negligible, is reasonable. Unlike for
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software-fault isolation schemes [83], we do not need to instrument every “store”

machine instruction—in Java, write barriers need to be inserted only for certain

Java bytecode instructions. These instructions are PUTFIELD, PUTSTATIC, AASTORE,

and any assignment within the VM or in native libraries that creates a connection

between two garbage-collected objects. PUTFIELD and PUTSTATIC need only be

instrumented if the type of the destination field is a reference to an object and not

a primitive type such as a double or integer. This information is known at run

time, because Java bytecode retains all type information.

KaffeOS’s write barriers prevent illegal cross-references by interrupting those

writes that would create them and raising an exception instead. We call such

exceptions “segmentation violations.” Although it may seem surprising that a

type-safe language runtime could throw such a fault, it actually follows the analogy

to traditional operating systems closely. However, whereas those systems guard

against writes into another segment, we reject writes that would connect to other

segments. As with all exceptions, kernel code must be able to gracefully back out

of segmentation violations.

Not all cross-references between heaps are illegal: only cross-references between

user heaps are, because such references would prevent full reclamation. Some cross-

references between user and kernel heaps are required to be able to precisely account

for the memory used by a process as discussed earlier and to allow for the provision

of system services by the kernel. We discuss how we reclaim those references in

Section 3.2.2. Figure 3.2 illustrates which cross-references are legal and which are

not.

An alternative to preventing the creation of illegal cross-references would have

been to revoke existing references after a process terminates. Such revocation

could be implemented in hardware or in software. A hardware implementation

would invalidate a reference by unmapping the memory at which the object is

stored. Since we want our design to apply to a wide range of systems, we assume

that the platforms on which it runs will not necessarily have a hardware memory

management unit under its control. We also assume that the host may not have
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Figure 3.2. Valid references for user and kernel heaps. References between user
and kernel heap are legal in both directions. Cycles involving a single user heap
and the kernel heap may occur, as shown on the left. Multiple processes can refer
to the same object on the kernel heap, thereby sharing it. References that would
span across user heaps are illegal.

an operating system that supports virtual memory. A Palm Pilot is an example

of such a host. Under these assumptions, memory cannot simply be revoked by

unmapping it.

A software approach to revocation would involve resetting all locations that hold

references to a shared object. For instance, a special value—analogous to the null

value used to represent an empty reference—could be assigned to these locations.

Future accesses through such a reference would trigger an access violation. To allow

for revocation in this way, all references to the object would have to be located.

In the presence of C code, such a search is impossible to do, because any

word in memory is a potential reference. Even a limited implementation that

is restricted to Java references would require extensive compiler support. This

problem is analogous to a problem that occurs in persistent object systems that

use the garbage collector to pickle and unpickle objects [30]. In these systems,
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when an object is written to persistent storage, all references to it have to be

updated. Although feasible, this scheme requires extensive compiler support to

keep track of references, which is expensive in both storage space and complexity

of implementation.

3.2.2 Separate GC

Each process’s garbage collection activity is separated. Each process must be

able to garbage collect its own heap independently of others. If there were no cross-

references at all between heaps, separate GC would be trivial. Since cross-references

are required to share objects on the kernel heap, we use techniques from distributed

garbage collection schemes [61] to take cross-references into account. Distributed

GC mechanisms are normally used to overcome the physical separation of machines

and create the impression of a global shared heap. In contrast, we use distributed

GC mechanisms to manage multiple heaps in a single address space.

3.2.2.1 Use of Entry/Exit Items

We use write barriers not only to prevent illegal cross-references but also to

detect and monitor legal cross-references. When a cross-reference is created, we

create an entry item in the heap to which it points. During a garbage collection

cycle, entry items are treated as garbage collection roots. We share the entry

item in the case that multiple cross-references to the same object exist, as shown

in Figure 3.3. In addition, we create a special exit item in the original heap to

remember the entry item created in the destination heap. Unlike distributed object

systems such as Emerald [50], entry and exit items are not used for naming nonlocal

objects. Instead, they are used to decouple the garbage collection of different heaps.

Exit items are subject to garbage collection: if the garbage collector encounters

a reference to an object outside the current heap, it will not traverse that object,

but the corresponding exit item instead. Exit items that are not marked at the end

of a GC cycle are garbage collected, and the reference count of the entry item to

which it points is decremented. Entry items are reference counted: they keep track

of the number of exit items that point to them. If an entry item’s reference count
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Figure 3.3. Use of entry and exit items. We keep track of each legal cross-heap
reference through exit and entry items. Multiple exit items can refer to the same
entry item if an object is shared by more than one heap. Dashed lines are used to
denote that objects do not need to store a direct pointer to the exit items; instead,
they can be found through a hashtable indexed by the remote address.

reaches zero, the entry item is removed, and the referenced object can be garbage

collected if it is not reachable through some other path.

3.2.2.2 Interheap Cycles and Merging Heaps

Since cross-references between heaps are reference counted, we must pay partic-

ular attention to cycles. Reference counting cannot reclaim cycles of objects, even

if they are not reachable through any path. Our rules for allowing cross-references

restrict the possible types of interheap cycles that can occur. Since cross-references

between user heaps are not legal, there can be no cycles between user heaps. The

only form of interheap cycles that can occur is between the kernel heap and user

heaps.

A user heap can acquire references to the kernel heap when a user process

executes a system call that returns a reference to a kernel object. For example, such
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references are returned to provide kernel services. Once the entry and exit items

are registered, the user process is free to store references to that object anywhere

on its heap. For a cycle to be created, however, a reference to an object allocated

on the user heap would have to be reachable from a kernel object. Writes to kernel

objects can only be done by trusted kernel code; therefore, we can control what

cycles are created, modulo any bugs.

Our kernel code tries to avoid cycles where possible. However, some cycles are

unavoidable: for instance, a process object is allocated on the user heap, while

its process table entry is allocated on the kernel heap. These two objects must

reference each other. Our kernel allows such cycles only if they include system

objects whose expected lifetime is equal to the lifetime of their owning processes.

An object’s expected lifetime is evident from its purpose: for instance, a process

object lives as long as the process.

Interheap cycles are collected after a process terminates or is killed. After

we destroy all its threads, we garbage collect the process’s heap and merge the

remaining objects into the kernel heap. All exit items that now point back into the

kernel heap are destroyed, and their corresponding entry items are updated and

reclaimed if their reference counts reach zero. Garbage collection of the kernel can

then collect any unreachable cycles. Figure 3.4 illustrates these steps.

Because we allow user-kernel cross-references, there is the theoretical possibility

that larger cycles spanning multiple heaps could be created accidentally. Such

a scenario would require intermediate objects on the kernel heap that connect

different user heaps. Such occurrences would be considered kernel bugs. Such

bugs do not compromise type safety; memory leaks are their worst consequence.

The design decision that heaps be merged upon termination does not unduly

limit the options available when implementing the memory allocator and garbage

collector. For nonmoving collectors, merging can be implemented merely by recol-

oring the objects (or pages of objects). Implementations that would have to move

the objects will not have to move many objects, because we garbage collect the user

heap before merging. Only objects that were kept alive by objects on the kernel
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Figure 3.4. Terminating a process. First, all threads are terminated. Second,
a GC cycle is run. Finally, the heaps are merged, and unreachable cycles can be
collected.

heap have to be merged. For this reason, the collection of entry and exit items

while merging heaps should not add substantial overhead.

3.2.2.3 Thread Stack Scanning

In a garbage-collected system, objects can be kept alive if they are referenced

from any thread’s activation records, as in the case of local variables that hold

object references. For this reason, a garbage collector includes all valid references

on thread stacks and in machine registers in its set of roots. All objects that

are reachable on a directed path from the roots are considered alive. To obtain

these roots, the threads generally have to be stopped for a brief period of time

so that a snapshot of the roots located on their stacks can be taken. Depending

on the garbage collection algorithm, this snapshot can be taken at the beginning

(in snapshot-at-beginning algorithms), or at some point during the collection (in

incremental update algorithms [87]).
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The local variables and registers of all processes’ threads must be included in

the root set whenever a heap is garbage collected. This necessity follows from the

following scenario in which a thread performs a system call that needs to gather

information about another process, then during the execution of that system call the

thread needs to access objects located on the other process’s heap. Access to such

objects requires references to them from that thread’s local variables or registers.

These references need to be taken into account when determining which objects

are reachable. Our write-barrier mechanism does not eliminate this requirement.

Write barriers prevent a process only from storing a reference to a foreign object

in its own heap, but they do not prevent that process from otherwise using that

object. For instance, invoking a method such as Object.hashCode() does not

require that a reference to the object be stored on the heap, but type safety would

be compromised if the object were not kept alive.

The price for examining all threads is not prohibitive. Foreign threads do not

have to be stopped for more than a miniscule amount of time, which we show in

Section 5.2. In our implementation, this amount of time is less than the granularity

of the time slices with which the scheduler schedules threads. The expected time is

small, because there are typically few references from foreign threads into the heap

that is collected, which means that most references found on foreign thread stacks

can be rejected quickly when scanning those stacks.

Additional optimizations could be added. For instance, the information of a

stack scan could be saved and made available to all collectors (a time-space trade-

off). Incremental thread stack scanning schemes [19] could be used to reduce the

time required to scan a stack, and a stack does not have to be scanned multiple

times while it is suspended.

One disadvantage of the necessity to scan all threads is that it scales badly in

the worst case. Theoretically, one process could deny service to other processes

by creating a large amount of threads and increasing the other processes’ garbage

collection loads. However, creating a thread is possible only through the kernel.

This vulnerability is similar to other attacks against kernel services, which can be
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avoided by imposing limits on the number of threads a process can create. In

addition, the optimizations described above would limit the problem.

3.3 Interprocess Communication

We must ensure that all communication mechanisms are subject to protection

and resource control. This task also mirrors the responsibility of an operating

system kernel. For example, a kernel must bound IPC port queues to ensure that

one process does not deny communications service to another process. In systems

that employ capabilities, such as Mach [1] or Fluke [36], the kernel must track

capabilities to ensure that a process does not acquire communication rights that

it should not have. In systems that provide shared memory or memory-mapped

files, the kernel provides memory that is shared between processes. The memory

mappings into the participating processes’ address spaces must be established in

kernel mode to ensure that processes cannot violate any protection guarantees and

to maintain sufficient isolation between the processes.

There is a trade-off between the difficulty of achieving isolation and the costs of

communication between processes. If resources are completely separated, e.g., no

memory is shared, isolation is easier to guarantee, but the cost of communicating

is higher. If resources are shared, communication costs are lower, but it becomes

harder to provide isolation and resource management. Before describing the design

and properties of the communication model used in KaffeOS, we discuss this trade-

off between memory control and sharing for different options of data sharing.

3.3.1 Sharing Models

A sharing model defines how processes can share data with each other. We

discuss three possible models: copying, indirect sharing, and direct sharing. In a

runtime system that supports processes, the choice of sharing model affects how

memory accounting and resource reclamation can be implemented, and vice versa.
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3.3.1.1 Copying

To share data when address spaces are not shared, the data must be copied.

For example, copying is necessary when two processes are on different machines.

Copying was the traditional approach to communication in RPC systems [12],

although research has been aimed at reducing the cost of copying for same-machine

RPC [11]. Mach [1], for example, used copy-on-write and out-of-line data to avoid

extra copies. Java’s version of RPC, called remote method invocation (RMI [17]),

uses copying in its object serialization framework.

If data copying is the only means of communication between processes, then

memory accounting and process termination are straightforward. Processes do not

share any objects, so a process’s objects can be reclaimed immediately; there can

be no ambiguity as to which process owns an object.

However, the use of copying as the sole communication mechanism is unappeal-

ing because it violates the spirit of the Java sharing model and because it is slow.

There is enough support in a JVM for one process to safely share a trusted object

with an untrusted peer; not leveraging this support for fine-grained sharing in a

Java process model neutralizes a major advantage of using Java.

3.3.1.2 Indirect Sharing

In the indirect sharing model, objects are shared through a level of indirection.

When communicating a shared object, a direct pointer to that object is not pro-

vided. Instead, the process creates a proxy object, which contains a reference to

the shared object and passes a pointer to the proxy object. Proxies are system-

protected objects. To maintain indirect sharing (and prevent direct sharing), the

system must ensure that there is no way for a client to extract a direct object

pointer from a proxy. Such second-class handles on objects are commonly called

capabilities; analogues in traditional operating systems include file descriptors and

process identifiers. Indirect sharing is used in the J-Kernel [42, 43] system.

The advantage of indirection is that resource reclamation is straightforward.

All references to a shared object can be revoked, because the level of indirection

enables the system to track object references. Therefore, when a process is killed,
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all of its shared objects can be reclaimed immediately. One disadvantage of indirect

sharing is that the use of proxies slightly increases the cost of using shared objects.

Another disadvantage is that indirect sharing requires the programmer to pay

careful attention to arguments passed to methods that are invoked on shared

objects. Such arguments must be proxied to prevent the leaking of direct references.

3.3.1.3 Direct Sharing

The sharing model in standard Java (without processes) is one of direct sharing :

objects contain pointers to one another, and a thread accesses an object’s fields via

offsets from the object pointer. Since Java is designed to support direct sharing

of objects, another design option is to allow direct sharing between processes.

Interprocess sharing of objects is then the same as intraprocess sharing. Direct

sharing in single-address-space systems is somewhat analogous to shared memory

(or shared libraries) in separate-address-space systems, but the unit of sharing is

at a finer granularity.

If a system supports direct sharing between processes, then process termination

and resource reclamation are complicated. If a process exports a directly shared

object arbitrarily, it is possible that that object cannot be reclaimed when the

exporting process is terminated. As discussed in Section 3.2.1, all exported ref-

erences to a shared object must remain valid, so as not to violate the type-safety

guarantees made by the Java virtual machine. As in the case of user/kernel sharing,

we suitably restrict references while still maintaining most of the benefits of direct

sharing. Unlike user/kernel sharing, however, our direct sharing model does not

assume that one sharing party is trusted.

3.3.2 Direct Sharing in KaffeOS

In KaffeOS, a process can dynamically create a shared heap to communicate

with other processes. A shared heap holds ordinary objects that can be accessed in

the usual manner. Shared objects are not allowed to have pointers to objects on any

user heap, because those pointers would prevent the user heap’s full reclamation.

This restriction is enforced by our write barriers; attempts to create such pointers
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result in an exception. Figure 3.5 shows which references are legal between user

heaps, shared heaps, and the kernel heap. References between a shared heap and

the kernel heap are legal in both directions, similar to references between a user

heap and the kernel heap.

Shared resources pose an accounting problem: if a resource is shared between

n sharers, should all n sharers be charged 1/n of the cost? In such a model, the

required contribution of each sharer would grow from 1/n to 1/(n−1) when a sharer

exits. Sharers would then have to be charged an additional 1/(n − 1) − 1/n =

1/n/(n − 1) of the total cost. As a result, a process could run out of memory

asynchronously through no action of its own. Such behavior would violate isolation

between processes. Therefore, we charge all sharers in full for shared data when

they obtain references to it and reimburse sharers in full when they are done using

the shared data.

User
Heaps

Legal Reference

Illegal Reference

Kernel Heap

Shared Heap

Figure 3.5. Valid cross-references for shared heaps. References from a user
heap to a shared heap are legal and necessary to share objects. References from
a shared heap to any user heap would prevent full reclamation and are therefore
illegal. Shared objects may refer to kernel objects and vice versa.
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A similar problem would occur if one party could expand the size of the data

that is shared. If the size of the shared data increased over time, a process could

asynchronously run out of memory. To avoid this problem, we allow processes to

share only data of fixed size. This decision may lead to some waste of memory,

because applications that do not know how much data they will share may have to

overprovision the shared heaps they use.

Our model therefore guarantees three properties:

• One process cannot use a shared object to keep objects in another process

alive.

• All sharers are charged in full for a shared heap while they are holding onto

the shared heap, whose size is fixed.

• Sharers are charged accurately for all metadata, such as class data structures.

A shared heap has the following lifecycle. First, one process picks one shared

class out of a central shared namespace, creates the heap, loads the shared class

into it, and instantiates a specified number of objects of that shared class. During

this instantiation, each object’s constructor is invoked using the Java reflection

API. A shared class can execute arbitrary code in its constructor, which includes

instantiating objects of additional classes, which are also loaded onto the shared

heap. Typically, a single object of a shared class is constructed, which serves as

a wrapper to jump start the process of populating the shared heap. For instance,

such a wrapper object could build a more complex data structure, such as a tree

or hashmap, and insert objects whose content is read from a file.

While the heap is being created, its memory is charged to its creator. The

creating process does not need to know the actual size of the shared objects in

advance, which would often be impractical.

After the heap is populated with classes and objects, it is frozen, and its size

remains fixed for its lifetime. Kernel code keeps track of what shared heaps are

currently in use and provides a lookup service to user processes. Other processes can

use this service to look up a shared heap; this operation returns a direct reference to



44

the objects in it. When a process looks up a shared heap, it is charged the amount

established when that heap was frozen. The lookup fails if the amount exceeds the

potential sharer’s memory budget.

If a process drops all references to a shared heap, all exit items to that shared

heap become unreachable. After the process garbage collects the last exit item

to a shared heap, that shared heap’s memory is credited to the sharer’s budget.

When the last sharer drops all references to a shared heap, the shared heap becomes

orphaned. The kernel garbage collector checks for orphaned shared heaps at the

beginning of each kernel GC cycle and merges them into the kernel heap. This

per-heap cost must be bounded by placing limits on the number of shared heaps a

process can create during a given time period. Otherwise, a process could repeatedly

create and abandon shared heaps and deny service to other processes.

Metadata related to shared classes and objects are allocated on the shared heap.

Because the shared heap is frozen after it is populated with objects, we need to

ensure that no further allocations of metadata are necessary afterwards. For this

reason, we eagerly perform allocations that would otherwise be performed lazily

in Java, such as the compilation of bytecode to native code and the resolution of

link-time references. We do not envision this to be a problem since data are not

shared casually in KaffeOS, but for the purposes of interprocess communication.

Therefore, it is unlikely that too much unnecessary work will be done—unnecessary

work is done only if the shared classes contain dead code that a lazy compiler would

not have compiled and its symbolic references would not have been resolved. This

situation could happen if the class contains debugging code (such as a static main

method for testing) or if the class was adapted from existing code, but we expect

that overhead to be small.

3.3.2.1 Programming Model and Trust

Processes exchange data by writing into and reading from shared objects and

by synchronizing on them in the usual way. Acquiring references to the objects

requires the invocation of a special API, but making use of the objects does not.

The fixed size of a shared heap and the fact that attempts to write references to



45

user heap objects into shared objects will trigger segmentation violation exceptions

impose some restrictions on the programming model used. For instance, certain

dynamic data structures, such as variable-length queues or trees with a dynam-

ically changing number of nodes, cannot be efficiently shared. Their fixed-sized

counterparts can be shared, however. For instance, it is easily possible to share

such data structures as read-only tries that are used for dictionary lookup. Sec-

tion 5.4 provides a thorough discussion of the restrictions imposed by our shared

programming model for a selected set of examples.

Our direct sharing mechanism is designed not to require the kernel to trust

the code associated with any shared classes. Untrusted parties, without additional

privileges, can share data; however, the communicating parties must trust each

other. Our sharing mechanisms do not defend a server against an untrusted client.

If an untrusted client is terminated while operating on a shared object, the shared

object might be left in an inconsistent state. If the shared classes’ code were trusted,

the runtime’s security policy could permit the code to enter kernel mode to protect

the shared data structure. In this manner, we could implement trusted servers that

protect the data structures they share with untrusted clients. Such an arrangement

would be analogous to in-kernel servers in microkernel-based systems [52].

3.4 Hierarchical Resource Management

In KaffeOS, the kernel manages primary resources. Primary resources are those

that must be shared by all processes, such as CPU time, memory, or kernel data

structures. Kernel data structures can be managed simply by applying conventional

per-process limits. In this section, we focus on the mechanisms for setting resource

management policies for memory and CPU time.

We use hierarchical resource management schemes. In a hierarchical scheme,

resources can be subdivided along a tree, such that the sum of resources used by a

subtree corresponds to the amount of resources assigned to the root of that subtree.

Such an arrangement is useful in many situations, as it mirrors the assignment of

“real-life” resources. For instance, a server administrator may decide to assign 80%
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of a resource to “premium” customers and the remaining 20% to the remaining

customers. Within the premium group, different customers may get still different

shares of that resource.

In our resource framework, we represent resources as objects. A resource object

is like a capability, in that its holder can obtain a certain amount of a resource, or

pass it to a new process it creates. Applications can employ different policies by

creating different resource objects and assigning them to processes. For instance, a

servlet engine can create resource objects for the servlets it spawns, and allot the

desired amount of a resource to them.

3.4.1 Memory Management

To manage memory, we associate each heap with a memlimit, which consists

of an upper limit and a current use. The upper limit is set when the memlimit is

created and remains fixed for its lifetime; only the current use portion is updated.

Memlimits form a hierarchy: each one has a parent, except for a root memlimit.

All memory allocated in a heap is debited from its memlimit, and memory collected

from a heap is credited to its memlimit. This process of crediting/debiting is applied

recursively to the node’s parents, according to the following rules.

A memlimit can be hard or soft.1 This attribute influences how credits and

debits percolate up the hierarchy of memlimits. A hard memlimit’s maximum limit

is immediately debited from its parent, which amounts to setting memory aside for

a heap. Credits and debits are therefore not propagated past a hard limit after it

has been established. For a soft memlimit’s maximum limit, on the other hand, no

memory is set aside, so a process is not guaranteed to be able to allocate its full

limit. It cannot, however, individually allocate more than this limit. All credits and

1NB: The adjectives hard and soft were borrowed from hard and soft currencies in economics:
liquidity in a hard currency typically guarantees that a sought after resource can be acquired.
The purchasing power of a soft currency depends on how much of that resource is available and
on how many buyers are competing for it. Hard and soft memlimits should not be confused with
hard and soft quotas in filesystems; in particular, a memlimit’s softness does not imply that its
upper limit can be temporarily exceeded.
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debits of a soft memlimit’s current usage are immediately reflected in the parent.

If the parent is a soft limit itself, the process is applied recursively such that an

allocation fails only if it would violate the maximum limit of any ancestor node.

Hard and soft limits allow different memory management strategies. Hard limits

allow for memory reservations but incur inefficient memory use if the limits are too

high. Soft limits allow the setting of a summary limit for multiple activities without

incurring the inefficiencies of hard limits, but they do not reserve memory for any

individual activity. They can be used to guard malicious or buggy applications

where high memory usage can be tolerated temporarily. If one considers the

example shown in Figure 3.6; the 64 MB root memlimit is split into a hard memlimit

with 16 MB on the left, of which 9 MB are used, and a soft memlimit with 48 MB

on the right. The soft memlimit is further subdivided into two soft memlimits with

30 MB each. Because these memlimits are soft, the sum of the maximum limits of

hard soft

soft

soft
16MB

MemRes
Root

48MB

30MB 30MB

root

64MB

use: 9MB use: 26MBuse: 14MB

use: 56MB

use: 40MB

Figure 3.6. Hierarchical memory management in KaffeOS. The numbers inside
the boxes represent limits; the numbers outside represent current use. A hard
limit’s limit is immediately debited from its parent; for soft limits, only the actual
use is debited.
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sibling nodes can nominally exceed the parent’s maximum limit (30 MB + 30 MB

= 60 MB is greater than 48 MB.) Doing so allows a child to use more than it would

have been able to use had the memory been partitioned (for instance, one child

uses 26 MB, which is more than the 48 MB / 2 = 24 MB it could have used had the

48 MB been evenly split.) The sum of the current use of these soft memlimits (14

MB + 26 MB = 40 MB) is the current use of their parent. However, the current

use of the root memlimit is 56 MB, which is the sum of the current uses of its soft

child node (40 MB) plus the maximum limit of its hard child node (16 MB).

Soft limits are also used during the creation of shared heaps. Shared heaps are

initially associated with a soft memlimit that is a child of the creating process

heap’s memlimit. By default, their maximum limits are equal, but a smaller

maximum limit can be chosen for the shared heap’s memlimit. In this way, soft

heaps are separately accounted for, but still subject to their creator’s memlimit.

This mechanism ensures that they cannot reach a size that is larger than their

creator’s resources.

3.4.2 CPU Management

Managing CPU time is both similar to and different from managing memory.

Just as for memory, we must ensure that a process’s CPU use is completely ac-

counted for. Unlike memory, however, CPU time is committed only for short time

quanta. Consequently, the issue of revocation does not arise for CPU time in the

way it does for memory. Therefore, our scheduling mechanisms place no emphasis

on limiting CPU consumption but use scheduling algorithms that allow processes

to receive a guaranteed minimum share.

To completely account for a process’s CPU use, all activity that is done on

behalf of a process should be done in the context of that process. For this reason,

we minimize the time spent in uninterruptible sections of code in the kernel. This

is analogous to how packets should be processed by an operating system. For

example, Druschel and Banga [32] demonstrated that system performance can drop

dramatically if too much packet processing is done at interrupt level, where normal

process resource limits do not apply. The use of a single kernel for system services, as
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opposed to using a client-server architecture, as done in microkernel-based systems

such as Mach [1], helps us to account for all activity in the proper process context.

We use a stride scheduler [84] for CPU scheduling. In stride scheduling, pro-

cesses obtain CPU time that is proportional to an allotted share. Accordingly,

our CPU resource objects represent a share of CPU. Stride scheduling is a work-

conserving scheduling scheme: CPU time that a process does not use is not wasted

but can be used by other processes. Therefore, it does not limit how much CPU

time a given process uses under light load. Under full load, if all processes are

runnable, a process uses only its assigned share.

The Java specification demands a priority-based scheduler for the threads within

one application ([49], §17.12). Since our process model maintains the illusion that

each process has a whole virtual machine to itself, we use stride scheduling to

schedule processes and use a priority-based scheduler to schedule the threads within

each process. A process’s garbage collection thread runs at a higher priority than all

other threads in that process. The garbage collection thread, the finalizer thread,

and all other threads in the process are summarily subject to the stride scheduler’s

proportional share scheduling; i.e., the priority-based scheduler is active only when

the global stride scheduler assigns CPU time to the process.

The kernel heap’s collector and finalizer threads are the only threads not sched-

uled by the stride scheduler. They are always scheduled whenever they are runnable.

This effect can be achieved by assigning an “infinite” number of tickets to them,

which will cause the scheduler to always schedule them if they are runnable. As al-

ready mentioned, denial-of-service attacks against the kernel heap can be prevented

by limiting the number of kernel operations a process can perform.

Figure 3.7 shows an example of a CPU resource hierarchy. The root CPU

resource is subdivided into a 40% and a 60% share. The 40% share is further

subdivided into a 20% and a 10% share (numbers given are with respect to the

root resource), which leaves 10% in the original share. Shares are not assigned to

threads, but to processes as a whole.
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Figure 3.7. Hierarchical CPU management in KaffeOS. The root CPU resource
is subdivided into a hierarchy. Each node constitutes a resource, which can be
attached to a process. Within each process, a simple priority-based scheduler is
used, which provides the same behavior as a stand-alone JVM.

3.5 Summary

Java’s language-based mechanisms provide memory safety and security for Kaf-

feOS user processes, which prevents them from accessing each other’s data. How-

ever, they are insufficient to allow for safe termination of processes. Safe termination

is provided by introducing a user/kernel distinction, or red line. This red line

protects critical data structures by deferring termination during kernel code, which

is written to avoid abrupt termination. Deferring termination is superior to the

alternatives of using cleanup handlers.

Our memory management subsystem provides each process with a separate

heap, which allows us to control the amount of memory available to a process.

By implementing a process’s logical resources as objects on that process’s heap,

we reduced the instances where limits on specific logical resources must be kept.

Exceptions are instances either where resources of the underlying system are in-

volved or where the creation of heaps themselves is concerned. The number of such
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instances is smaller than the number of instances in which a hardware-based system

would have to apply additional limits; we believe this reduction is an advantage of

systems that employ software-based protection.

We use write barriers both to prevent illegal cross-references and to manage legal

cross-references. Illegal cross-references are those that would allow sharing attacks

and compromise the full reclamation of a process’s memory. Legal cross-references

are necessary for sharing; by using entry and exit items, we can separate the garbage

collection activity of each process despite the presence of such cross-references.

KaffeOS’s approach to sharing is best characterized by looking at the different

situations in which objects could be shared, which can be summarized as follows:

• Sharing of arbitrary objects between untrusted parties is unsupported because

the resulting violation of isolation and the compromise of full reclamation

would trump possible benefits.

• Sharing of common runtime data structures and common objects maintained

by trusted code is supported via the kernel heap, with no restrictions on the

programming model.

• Sharing of dedicated objects between untrusted parties for the purposes of

interprocess communication is supported via KaffeOS’s shared heaps, albeit

in a somewhat restricted model.

Finally, KaffeOS provides a hierarchical resource framework for CPU time and

memory to allow for flexible resource management policies. CPU and time memory

are two physical resources that must be managed differently. For CPU scheduling,

KaffeOS uses a work-conserving stride scheduler. Our memory management scheme

assumes that virtual memory mechanisms are unavailable or inaccessible. Under

this assumption, committed memory cannot be revoked and must therefore be

limited. Reserving memory for processes, however, raises the specter of inefficient

resource use because of partitioning. To avoid such inefficient use, KaffeOS’s

memory limits do not always imply a reservation. Instead, KaffeOS supports both
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hard and soft limits on memory. Hard limits allow for reservations of memory,

but this memory is not available to other applications. Soft limits do not provide

reservations, but they make multiple applications subject to a common soft parent

limit, which avoids the problem of partitioning.



CHAPTER 4

IMPLEMENTATION

We implemented our KaffeOS prototype by extending Kaffe [85], an existing

Java virtual machine. Kaffe is publicly available under an open source license and

has a small user community that actively develops it. It is not a very fast JVM,

compared to industrial Java virtual machines. Its low performance stems mainly

from its just-in-time compiler, which performs little to no optimizations. The just-

in-time compiler does not inline methods or use sophisticated register allocation

algorithms. Its memory allocation subsystem is also not optimized. However, Kaffe

provides a sufficient base for our prototype, because it is mature and complete

enough to run real-world applications. Our design does not rely on any specific

properties of Kaffe and should apply to faster JVMs as well.

4.1 Kernel

The original Kaffe code used a nonpreemptive, cooperative threading system.

We developed a preemptive threading system, integrated it, and made the JVM

runtime thread-safe in the face of preemptive threads.

The original Kaffe source does not include a user/kernel boundary (red line).

Instead, it assumes that it is safe to throw an exception at almost any place. This

assumption regularly leads to corrupted data structures and frequent deadlocks

when threads exit abnormally. Such abnormal situations include not only those with

which a regular JVM is not normally expected to deal, such as resource exhaustion,

but also those that arise when other errors occur, such as ordinary loading or linking

errors. The insight that a red line is necessary stems from our attempts to find a

fix for these problems.
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We completely restructured the runtime system to establish the red line and

create a kernel that can safely back out of all exceptional situations. We examined

all parts of the Kaffe runtime to see whether they could be run in user-mode or

must be run in kernel mode. We also established a system of JVM-internal calling

conventions that included a way for errors to be signaled in kernel mode, which

are then propagated to a caller in user mode, where they can be converted into

exceptions.

Although the need for deferred termination does not generally coincide with

the need for synchronization, as discussed in Section 3.1.3, we found that the two

needs overlap in certain cases in which global locks are acquired. For instance, the

just-in-time compiler uses global data structures that must be protected against

concurrent access and abrupt termination. In such cases, we combine acquiring a

lock and disabling termination.

We implemented basic kernel services as classes in a package kaffeos.sys.-

*. We implemented as many methods as possible in Java and resorted to native

methods only when necessary, mainly for glue code to the portions of the virtual

machine written in C. Most of the kernel-related services are implemented in the

classes Kernel, Heap, and Process. Other kernel services, such as opening a file

or network socket, are implemented by adapting the existing classes in the Java

runtime libraries, such as java.net.Socket.

Kernel implements basic functionality to bootstrap and shutdown the system

or to enter and leave kernel mode; it also provides methods to control various

internal kernel properties. Heap implements access to the (native) implementation

of multiple heaps, it allows for the creation of new heaps, and it provides methods to

manipulate existing heaps. It also provides functionality for deep copying of objects

between heaps. Deep copying duplicates an object and the transitive closure of the

objects to which that object refers; for instance, when deep copying an array of

elements, each of its elements must be copied. Deep copies are necessary when

arguments to a system call must be passed from one process to another. For

instance, a process’s command line arguments must be deep copied, because a
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child process is not allowed to refer directly to the arguments stored in its parent

process.

The Process class provides the following functionality:

• bootstrapping of new processes,

• code to safely kill a process and invoke any necessary cleanup handlers to free

its logical resources,

• handles that can be used to control running processes,

• process-local properties, such a timezone or language-specific output settings

As discussed in Section 3.1.2, we changed all kernel code not to synchronize on

objects that are exposed to user code. A typical code transformation is shown in

Figure 4.1. The Thread class provides a method called join(), which can be used

to wait for a thread to complete execution. The current state of the thread is stored

/* original code */
class Thread {

private int state;

public synchronized void join() {
while (state != Thread.DONE) {

this.wait();
}

}

private synchronized void finish() {
state = Thread.DONE;
this.notifyAll();

}
}

/* KaffeOS version */
class Thread {

private int state;
private Object synch = new Object();

public void join() {
try {

Kernel.enter();
synchronized (synch) {
while (state != Thread.DONE) {

synch.wait();
}

}
} finally {

Kernel.leave();
}

}
}

Figure 4.1. Protecting kernel-internal locks. Instead of using a synchronized
method, an internal private field is used. The lock is acquired and released in kernel
mode. The transformed version of finish() is not shown.
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in a variable called state, which is set to DONE when the thread finishes. Because

this variable is accessed by both the finishing thread and any threads waiting for

the thread to finish, it must be protected by a lock. Since join() and finish()

are synchronized methods, the publicly exported Thread object functions as this

lock. One thread could prevent another thread from finishing by not releasing the

lock. In addition, if a thread is killed while holding the lock, the lock may not

be released. Finally, if the thread is killed in finish() between setting the state

and signaling the state change via notifyAll(), joining threads may not be woken

up and would subsequently hang. By using the internal private field synch as a

synchronization object and by acquiring and releasing the lock in kernel mode, both

problems are avoided.

4.2 Namespace and Class Management

We use Java’s class loading mechanism to provide KaffeOS processes with

different namespaces. This use of Java class loaders is not novel but is important

because we have tried to make use of existing Java mechanisms when possible.

When we use standard Java mechanisms, we can easily ensure that we do not

violate the language’s semantics. Other language-based systems provide different

name spaces in other ways: for example, the SPIN project used a mechanism called

domains, implemented by a dynamic linker [70].

As discussed in Section 2.2, Java represents its runtime types as class objects,

and each class object is distinguished by its defining class loader. We exploit this

fact to our advantage in two ways: First, we use multiple loaders if we cannot allow

or do not want processes to share classes. Second, we delegate to a common loader

for processes to share classes.

Reloading classes : Reloading is the multiple instantiation of a class from identi-

cal class files by different loaders. Although these instantiations constitute different

types, they use the same code, and thus their visible behavior is identical.

Reloaded classes are analogous to traditional shared libraries. Reloading a class

gives each instance its own copies of all static fields, just as a shared library uses a
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separate data segment in each process in which it is mapped. Reloaded classes could

share text, although our current implementation does not support such sharing.

Sharing text could be accomplished by changing the just-in-time compiler to emit

code that follows shared-library calling conventions. Such code would use indirect

calls through a jump table for calls that lead outside the library’s code segment.

Sharing classes : We can share classes between different processes’ namespaces

by delegating requests for them to a common loader. We share classes in two cases:

either because the class in question is part of the runtime library or because it is

the type of a shared object located on a shared heap. We refer to the former as

system-shared and to the latter as user-shared. System sharing of classes makes

more efficient overall use of memory than reloading them, because only a single

class object is created. Even if our implementation shared the text and constants

of reloaded classes, the advantage of having system-shared classes would likely

still be significant, because a system-shared class needs to maintain only a single

copy of its linking state. However, system-shared classes are not subject to per-

process accounting, because we assume that such sharing benefits all processes.

Their number and size are bounded, because applications cannot add system-shared

classes. Our goals in developing our class-loading policy were to gain efficiency

by maximizing system sharing and to maintain correctness and ease of use for

user-shared classes. At the same time, we had to take into account the sometimes

conflicting constraints imposed by the Java API and Kaffe’s linker implementation,

which we discuss below.

Process loaders : Each KaffeOS process has its own class loader, which manages

that process’s namespace. The process loader is a trusted system object that

implements the loading policy. When asked for a class, it decides whether the

class is shared or not. If so, the request is delegated to either the system loader (for

system-shared classes) or a shared loader (for user-shared classes). If the class is

not shared, it is either a system class that must be reloaded or a regular user class.

For user classes, our default implementation uses the standard Java convention of

loading classes from a set of directories and compressed archives that are listed in
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a CLASSPATH variable.

To ensure full namespace control, the process loader must see all requests

for classes, including those from user-created class loaders in that process. By

default, user-created class loaders in standard Java first attempt to delegate to the

system loader to ensure that system classes are not replaced by user classes. We

changed the class loader implementation to delegate to the process loader whenever

a user-created loader would delegate to the system loader in a conventional JVM.

KaffeOS’s model of delegation is depicted in Figure 4.2.

System-shared classes : To determine which classes can be system-shared, we

examined each class in the Java standard libraries [17] to see how it acts under

the semantics of class loading. In particular, we examined how classes make use

of static fields. Because of some unfortunate decisions in the Java API design,

some classes export static fields as part of their public interfaces. For example,

java.io.FileDescriptor exports the public static variables in, out, and err

(which correspond to stdin, stdout, and stderr.) Other classes use static fields

internally.

To system-share classes with static fields, either we must conclude that it is safe

to leave the fields unchanged, we must eliminate the fields, or we must initialize the

user loader

process loader

system loader

user loader

process loader
shared loader

shared loaderProcess A Process B

Figure 4.2. Class loader delegation in KaffeOS. Each process has its own process
loader, which is that process’s default loader. The process loader fields all requests
for system classes by user-defined loaders in the same process; such loaders cannot
directly delegate to the system loader. The process loader either reloads a class or
delegates to the system loader or a shared loader.
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fields with objects whose implementation is aware of KaffeOS’s process model. Final

static fields with a primitive type such as int are constants in Java and can be left

untouched. Elimination of static fields is sometimes possible for singleton classes,

which can be made to use object fields instead of static fields. If static fields cannot

be eliminated, we examine whether they can be initialized with objects whose

implementation is process-aware. If an object stored in a static field is used only by

invoking its methods, we can provide a substitute implementation that provides the

same methods but modifies their behavior to take the currently executing process

into account. For instance, a process-aware version of the System.out stream

maintains a stdout stream for each process and dispatches output to the appropriate

stream.

If the object’s fields are directly accessed by other classes, then creating a

substitute implementation becomes more complicated, because it requires changes

to the code that uses that object. As a practical matter, we tried to make as

few code changes as possible, to allow for easy inclusion of upgrades and bug

fixes developed for the code base upon which KaffeOS is built. Reloading classes

allows us to use a class with static fields practically unchanged in a multiprocess

environment. Consequently, we reload some classes that could have been rewritten

to be shared.

Linker constraints : The decision of whether to share or reload a class is subject

to linker-specific implementation constraints as well. First, shared classes cannot

directly refer to reloaded classes, because such references are represented using

direct pointers by the runtime linker and not through indirect pointers as in shared

libraries. Second, certain classes must be shared between processes. For example,

the java.lang.Object class, which is the superclass of all object types, must be

shared. If this type were not shared, it would not be possible for different processes

to share generic objects. Consequently, the transitive closure of classes pointed to

by Object has to be shared.

We used the JavaClass bytecode engineering library [26] to develop a small tool

that determines the transitive closure of classes referenced by a class. JavaClass has
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the ability to parse class files and provide access to the symbolic linking information

contained therein. We used the tool on the classes we needed to share. For java.-

lang.Object, we found that its closure turns out to be quite large: Object refers

to java.lang.Throwable, which is the base class of all exceptions, which in turn

refers to java.lang.System in its printStackTrace method. System is a complex

class with a multitude of references to other classes.

Fortunately, we can rewrite classes to remove direct references. This transforma-

tion requires the use of reflection to access fields or methods in a class. An example

of such a transformation is given in Figure 4.3, which depicts the initialization

code sequence for the System class. In the original version, the out variable was

implemented as a simple PrintStream layered on top of a buffered file stream,

which in turn relied on a FileOutputStream constructed using the stdout file

descriptor FileDescriptor.out. As discussed earlier, System.out is replaced with

a process-aware object that dispatches the output to the current process’s stdout

stream; println() is shown as an example. The current process’s output stream

is initialized with the current process’s FileDescriptor.out in a method called

kaffeos init(). Because FileDescriptor is reloaded, reflection is used to resolve

the name java.io.FileDescriptor in the context of the current process’s loader,

which avoids a direct reference from System to FileDescriptor. By convention,

the static kaffeos init() method, if it exists, is invoked for every shared class

at process initialization time. It serves as an analogue to static initializers in

reloaded classes. Code that would otherwise be in a static initializer is moved

to kaffeos init() if process-local data must be initialized.

When writing native methods for reloaded classes, we must ensure that refer-

ences to class objects and static fields are properly handled. In standard Java,

a native library can be loaded only by a single class loader ([53], §11.2.4). This

restriction was introduced to prevent native code from mistakenly intermixing

classes and interfaces from different class loaders. Such intermixing could occur

if native libraries cached pointers to class objects and static fields between calls.

Such caching is safe if classes that contain native methods are not reloaded. KaffeOS
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public final class System {
final public static PrintStream out;

static {
// direct reference to reloaded FileDescriptor class
FileOutputStream f = new FileOutputStream(FileDescriptor.out);
BufferedOutputStream b = BufferedOutputStream(f, 128);
out = new PrintStream(b, true);

}
}

/* KaffeOS version */
public class ProcessStdoutPrintStream extends PrintStream {

/* process-aware version */
void println(String s) throws IOException {

Process.getCurrentProcess.getStdout().println(s);
}

}

public final class System {
final public static PrintStream out = new ProcessStdoutPrintStream();

private static void kaffeos_init() {
Class fdclass;
fdclass = Class.forName("java.io.FileDescriptor", true,

Process.getRootLoader());
Field f = fdclass.getField("out");
((ProcessStdoutPrintStream)out).createStdoutStream(f.get(null));

}
}

Figure 4.3. Transforming library code. The original version of System.out was
implemented as a simple PrintStream layered on top of a buffered file stream, which
in turn relied on a FileOutputStream constructed using the stdout file descriptor
FileDescriptor.out. Because System must be shared, System.out is replaced
with a process-aware version that dispatches output to the current process’s stdout
stream. As in the original version, this stream is initialized with the current
process’s FileDescriptor.out. Because FileDescriptor is reloaded, reflection
is used to avoid a direct reference from System to FileDescriptor.
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does not impose this restriction and reloads classes with native methods. Therefore,

we must ensure that its native libraries do not perform such caching.

Adapting the runtime libraries to KaffeOS was a compromise between our desire

to share as many classes as possible to increase efficiency, yet at the same time

exploit reloading to avoid code changes. Out of roughly 600 classes in the core Java

libraries, we are able to safely system-share 430. This high proportion (72%) was

achieved with only moderate changes to a few dozen classes and more extensive

changes to a few classes, such as java.lang.System. The rest of the classes are

reloaded, which requires no changes at all. The set of runtime classes that an

application uses is, unsurprisingly, application-dependent. Table 4.1 shows the

distribution for the runtime classes used by the SPEC JVM98 benchmarks. (See

Section 5.1.2 for a detailed discussion of these benchmarks.) The proportion of

shared classes lies above 72%, although we note as a caveat that these benchmarks

do not exercise very many runtime classes; the results may therefore not be repre-

sentative.

User-shared classes : To ensure that every process that has access to a shared

heap sees the same types, process loaders delegate the loading of all user-shared

types to shared loaders. Each shared heap has its own shared loader, which is

created at the same time as the heap. Process loaders use a shared class’s name to

determine the shared loader to which the initial request for a shared class should

be delegated. Java’s class loading mechanism ensures that subsequent requests are

Table 4.1. Number of shared runtime classes for SPEC JVM98 benchmarks.

Benchmark check compress jess db javac mpegaudio mtrt jack
reloaded 8 8 8 8 8 8 8 8
shared 55 46 54 49 60 49 51 47

This table shows that of the runtime classes used by the SPEC JVM98 bench-
marks, only a small number cannot be shared and must be reloaded. For all
benchmarks, java.io.FileDescriptor, java.io.FileInputStream, and java.-

io.FileOutputStream are among the eight reloaded classes.
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delivered to the shared loader that is the defining loader of the initial class. If we

did not delegate to a single loader, KaffeOS would need to support a much more

complicated type system for its user-shared objects.

The namespace for user-shared classes is global, which allows communicating

partners to look up shared classes by name. We use a simple naming convention for

this shared namespace: the Java package shared.* contains all user-shared classes

and packages. The table that maps names to loaders is a global resource, and limits

on the number of entries a process can create could be applied to prevent that table

from growing indefinitely.

Like system-shared classes, user-shared classes cannot directly refer to reloaded

classes. Because most classes that are part of the runtime library are shared, this

limitation is not severe. As with system-shared classes, a developer of user-shared

classes can use reflection to access reloaded classes. Failure to use reflection results

in write barrier violations during linking, because the linker would attempt to create

a cross-reference from a class object on a shared heap to a class object on a user

heap.

4.3 Memory Management

We improved and adapted Kaffe’s memory management subsystem to work in

KaffeOS’s multiprocess environment. The original code provided only a single heap

and mostly used global data structures. We examined which data structures had

to remain global and which had to be encapsulated and replicated for each heap.

On this basis, we implemented cross-references and the merging of heaps. In this

section, we focus on the process-specific implementation aspects of the memory

management subsystem of our KaffeOS prototype.

The implementation consists of two parts: the memory allocator and the garbage

collector. The memory allocator provides explicit memory management facilities

similar to malloc/free. The garbage collector invokes the memory allocator to

first allocate and later free objects.
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4.3.1 Memory allocator

The memory allocator is logically divided into two components: the small object

allocator and the primitive block allocator. The small object allocator maintains a

pool of pages from which small objects are allocated. Each heap has its own pool

of small object pages. The primitive block allocator maintains a single global pool

of continuous memory regions that are comprised of one or more contiguous pages.

Objects that are larger than one page and small object pages are allocated from

the pool of primitive blocks.

A small object page is subdivided into units of equal size. This design has

the advantage that it is possible to determine in constant time whether a pointer

points to the start of an object, which is a frequently performed operation in

our conservative garbage collector. The regular layout of objects also speeds up

exception handling, because it allows the exception handler to quickly map a stored

program counter to the just-in-time compiled code in which it is contained. (Since

most Java methods are small [63] and since our just-in-time compiler does not

perform any inlining, the size of the compiled code is often far smaller than a page,

which is why our allocator stores them in small object pages.)

For each heap, the small object allocator keeps free lists for a number (n = 19)

of small object sizes. These sizes were determined using a heuristic that minimizes

the slack that occurs if the requested size is smaller than the next-largest small

object size. We determined this heuristic by examining a histogram of the object

sizes allocated during the execution of selected applications.

Keeping the free lists for small objects on a per-heap basis has the advantage

that all internal fragmentation is fully accounted for. Once a page is taken from

the primitive block list and prepared for use in a given heap, it is charged to that

heap. As a result, it is impossible for a process to launch a fragmentation attack

against KaffeOS by holding on to a few objects that are spread over multiple pages.

A second advantage is that no cross-process locking is necessary during allocation,

which reduces contention. Finally, because all objects within one page belong to

the same heap, we need to store the heap identifier only once for all objects on a
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page.

On the flip side, because a page will be charged to a heap even if only a single

object is used, processes may be overcharged for memory. If we consider only live

objects, we can expect an average overcharge of n ∗ pagesize/2, where n is the

number of freelists. For n = 19 small object sizes, the overhead amounts to 38 KB

on a machine with 4KB pages. Picking a smaller n would reduce this overhead

but would increase the slack that is wasted per object. Internal fragmentation

can also lead to an overcharge when a heap is not garbage collected frequently

enough, so that it allocates long-lived objects in new blocks instead of garbage

collecting and reusing older blocks. The possible impact of this overcharge is

difficult to predict, because it depends on an application’s allocation and garbage

collection patterns. However, overcharging because of internal fragmentation does

not require an application to have a memlimit with a maximum limit greater than

the maximum total size of its live objects, because a garbage collection is triggered

when a heap reaches its maximum limit. This fragmentation issue occurs only

because our collector does not move objects, and it is not inherent in our design.

Although internal fragmentation can be accounted for, our implementation is

subject to external fragmentation of global memory. In practice, this fragmentation

caused problems with lazily allocated kernel data structures, because scattered

small object pages with long-lived kernel data fragmented the space of primitive

block, which reduced the maximum size of primitive blocks available. To prevent the

kernel from causing external fragmentation in this way, we adopted a work-around:

when possible, we allocate kernel pages from a large continuous block at the bottom

of the global memory pool. Figure 4.4 illustrates how blocks are allocated. The

preferred area for kernel heap pages is shown on the top left. The primitive block

allocator allocates blocks of memory whose sizes are multiples of a pagesize, and

external fragmentation can occur. Like the internal fragmentation discussed earlier,

this external fragmentation could be avoided if a moving collector were used.



66

��������������������
��������������������

kernel heap ���������������
������
���

heap A ���������������
������
���

heap B

�����������������������������������������������������������������

�����������������������������������������������������������������

	�		�		�	
	�		�		�	
	�		�		�	
	�		�		�	
	�	


�

�

�


�

�

�


�

�

�


�

�

�


�


���������
���������
���������
���������
���

���������
���������
���������
���������
���

��
��
��
�

������
������
������
���

���������������������������������������������������������������

���������������������������������������������������������������

�����������������������������������

������
������
������
���

������
������
������
���

������
������
������
���

�����������������������������������

�����������������������������������

�������������������������������������������������

�������������������������������������������������

����������������������������

����������������������������

������������������������������������

������������������������������������

���������������������������
���������������������������

���������������������������
 � � � �  � � � �  � � � � 

!�!�!�!!�!�!�!!�!�!�!
"�"�"�""�"�"�""�"�"�" #�#�#�#�##�#�#�#�##�#�#�#�##�#�#�#�#

$�$�$�$�$$�$�$�$�$$�$�$�$�$$�$�$�$�$

%�%�%�%�%%�%�%�%�%%�%�%�%�%
&�&�&�&�&&�&�&�&�&&�&�&�&�&'�'�'�'�'

'�'�'�'�''�'�'�'�''�'�'�'�'

(�(�(�(�((�(�(�(�((�(�(�(�((�(�(�(�( )�)�)�)�))�)�)�)�))�)�)�)�))�)�)�)�)

*�*�*�*�**�*�*�*�**�*�*�*�**�*�*�*�*

+�+�+�+�++�+�+�+�++�+�+�+�++�+�+�+�+

,�,�,�,�,,�,�,�,�,,�,�,�,�,,�,�,�,�,

-�-�-�-�--�-�-�-�--�-�-�-�--�-�-�-�-

.�.�.�.�..�.�.�.�..�.�.�.�..�.�.�.�.

/�/�/�/�//�/�/�/�//�/�/�/�//�/�/�/�/

0�0�0�0�00�0�0�0�00�0�0�0�00�0�0�0�0

free

used

kernel heap

preferred for

Figure 4.4. Internal and external fragmentation in KaffeOS. At the top, the
primitive block allocator allocates blocks of memory whose sizes are multiples of
a pagesize. External fragmentation can occur. The preferred area from which to
allocate primitive blocks that are used for objects on the kernel heap is at the low
end of the managed memory area, so as to reduce external fragmentation. At the
bottom, the figure shows two small object pages for a given object size. All unused
cells are kept in a singly linked freelist whose entries can span multiple small object
pages. All internal fragmentation is accounted for.

4.3.2 Garbage collector

The original Kaffe provided only a conservative, nongenerational, nonincremen-

tal collector that walked all stacks and all objects on the heap conservatively. We

improved its performance by using type information to walk the heap precisely,1

but stacks are still walked conservatively for easier integration with native code.

We use the tricolor scheme [28], which was originally developed to reason about

incremental collectors, to explain how it works. In this scheme, one of three colors

(black, grey, and white) is assigned to each object during garbage collection.

Initially, all objects start out white. Garbage collection roots are colored grey.

1Most programs allocate more than half of their space for nonreferences [27].
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During the mark phase, all grey objects are walked and marked black. All white

objects that are reachable from a grey object are greyed before the grey object is

marked black. This process is repeated until there are no more grey objects. At the

end of the mark phase, all black objects are kept and all white objects are either

freed or become eligible for finalization. If an object is subject to finalization, its

finalizer will be executed, the object will be marked as having been finalized, and

it will be freed as soon as it again becomes unreachable. Objects that are waiting

to be finalized are treated as garbage collection roots to ensure that they and all

objects to which they refer stay alive. When walking the heap, we do not need to

treat finalizable objects differently from other grey objects.

For correctness, we must ensure that the set of objects that we identify as

reachable does not change during the mark phase, even if the reachability graph

should change. In the simplest case, we could prevent all threads from running

during the full GC cycle. We always stop all threads that belong to that heap’s

process. As discussed in Section 3.2.2.3, though, it would violate the separation

between different processes if we prevented all remote threads from running for the

full duration of the collection. The following argument shows that we do not need

to stop all remote threads.

If an object is connected to the reachability graph only by a single edge, we call

that edge a “last reference.” Such references constitute the worst-case scenario for

the garbage collector. Figure 4.5 depicts two objects, A and B, in a heap, as well

as two remote threads, RT1 and RT2. In the figure, B’s last reference is stored in

A. The last reference can move to RT1’s (or RT2’s) stack if RT1 or RT2 reads the

reference onto its stack and writes a null value into A. We focus on B as the object

that we must keep alive, even if the location of its last reference changes between

A, RT1, or RT2.

For either RT1 or RT2 to obtain a reference to B, there must have been an entry

item R with some path to B (unless the heap is being bootstrapped, during which

time no garbage collection takes place). In addition, since RT1 and RT2 are different

threads, they can pass references to B between each other only by temporarily
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A

B

R

RT1

RT2

Figure 4.5. Worst-case scenario for remote thread stacks in KaffeOS. In this
scenario, the last reference to object B can be stored in either A, RT1, or RT2. In
either case, the garbage collector must keep B alive without stopping either RT1
and RT2 for the duration of the scanning phase.

storing them in an intermediate object, which we assume to be A without loss of

generality. We need to consider only the case in which this intermediate object is

located on the same heap as B: if the reference were stored into an object on the

kernel heap, an entry item for B would be created, which would ensure that B is

kept alive. In addition, write barriers prevent the storing of a reference to B into

objects on other user or shared heaps.

KaffeOS does not trigger a write barrier violation when a remote thread ma-

nipulates A, because our write barrier policy allows writes that create intraheap

references. In our example, it allows any—including remote—threads to write a

reference to B into A. It will also allow the assignment of null to fields in A. This

policy of not depending on the heap association of the executing thread is necessary

to allow bootstrapping of new heaps by remote threads. Therefore, we cannot rely

on write barrier violations to detect manipulations by remote threads.

We must ensure that object B is marked, independent of how the activities of

threads RT1 and RT2 change the location where the last reference to B is stored.
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We could miss B if the last reference is not on any thread’s stack while we scan

the stack and if the last reference is not reachable from A while we scan this heap’s

entry items. This situation can occur only if the last reference moves between these

locations.

One option to address this problem would have been to implement incremental

garbage collection, which can deal with concurrent mutators. However, this would

have been expensive to do, given the infrastructure with which we worked. Our

solution does not require a fully incremental collector.

Instead, we block those foreign threads that attempt writes into a heap when a

garbage collection for that heap has been started. Usually, this blocking affects only

few, if any, threads. Only foreign threads in kernel mode have a legitimate reason

to write into a process’s heap, and only if they perform kernel operations directly

related to that process. The write barrier checks a per-heap flag called gc running

that each heap sets when a garbage collection has started (see Figure 4.6).

However, the write barrier code, because it is executed before the actual write,

cannot perform this check atomically with the write. In other words, there is a time

window in which a foreign thread could check whether a heap is being collected, see

that its gc running flag is false, and complete the write later during the garbage

collection. Every thread can have at most one such outstanding write; consequently,

the last reference cannot “ping-pong” between RT1’s and RT2’s stack, which would

require two outstanding writes.

We adapt our collector’s scan phase to take such belated writes into account.

Our algorithm is shown in Figure 4.7. In Part 1, we first walk and mark all entry

items. If B is reachable from R during that time, it is marked. One can assume it is

not, and the last reference is on RT1’s stack. In Part 2, we walk all remote thread

stacks. If B is still reachable from RT1’s stack when we walk it, it is marked.

However, RT1 might have moved the last reference into A. For this reason, we

recolor all black objects to be grey and rewalk them in Part 3. During this time,

B will be marked. It is not possible for the last reference to have moved to RT2’s

stack, because RT2 cannot write null into A if it read the last reference written
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/* dst->field = src */
write_barrier(dst, src)
{

dcoll = dst.collector;
while (dcoll->gc_running) {

synchronize (dcoll) {
while (dcoll->gc_running) {

wait();
}

}
}
if (src == 0) return; /* proceed with write */
scoll = src.collector;
if (check_cross_ref(scoll, src, dcoll, dst))

return; /* proceed with write */
throw new SegmentationViolation();

}

Figure 4.6. Pseudocode for write barrier. Our write barrier code first determines
the heap on which the destination object is located. It determines whether that
heap is being collected and waits if it is. Otherwise, it determines the collector of
the source object and checks whether either null is assigned or the cross-reference
is legal. Exit and entry items are created or updated during check cross ref()
as required.

by RT1 after the garbage collection started: the race could not occur. The last

reference could not have moved back onto RT1’s stack, either, because the race

cannot occur twice in the same thread.

In summary, our thread stack algorithm needs to perform more work than in

the single process case. In particular, it needs to walk each remote entry twice, as

well as all objects reachable from them. Because entry items to user heaps can be

created only by kernel code, there are generally few of them. For instance, a simple

“Hello, World” program creates only two entry items. The collection of the kernel

heap itself is a special case, where we stop all threads for the entire duration of GC.

4.4 Summary

We implemented a prototype of KaffeOS by extending and modifying the exist-

ing code base of the Kaffe JVM. The core aspects of our implementation covered in
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begin_mark_phase(Collector *coll)
{

coll->gc_running = true;
atomic { /* Part 1 */

coll->mark_entry_items();
coll->walk_grey_list();

}

forall (t in coll->RemoteThreadSet()) /* Part 2 */
atomic {

t->scan();
}

atomic { /* Part 3 */
coll->turn_black_objects_grey();
coll->walk_grey_list();

}
/* Part 4 */

// walk local thread stacks
// walk remaining gc roots
// ...

}

Figure 4.7. Pseudocode for mark phase. Remote threads can run outside of
blocks marked atomic. On a uniprocessor, atomic could be implemented simply by
disabling interrupts. The time spent inside atomic blocks is bounded and typically
small, because we expect few entry items for user heaps in Part 1 and because we
expect few valid references from remote heaps in Part 2.

this chapter include the kernel, the namespace and class management subsystem,

and the memory subsystem. This discussion is not exhaustive of the work we did

to create our prototype; we also had to perform substantial implementation work

in such areas as the implementation of the threading system, the stride scheduler,

and the core class loading mechanism.

We implemented the KaffeOS kernel as a set of Java classes with corresponding

native methods. Implementing the kernel involved implementing classes for process

and heap management and introducing the red line to ensure safe termination.

We introduced the red line by redesigning some sections of code and by applying

transformations to others so that critical data structures are manipulated in kernel
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mode and so that kernel code handles all exceptional situations carefully. This

experience shows that the user/kernel boundary can be introduced into an existing

code base; nevertheless, it should be used as a structuring principle from the

beginning when designing JVMs or other runtime systems.

KaffeOS uses Java class loaders to provide its processes with separate name-

spaces. The use of class loaders proved to have both advantages and disadvantages.

Some advantages are that they are integrated into the language, that they do not

compromise type safety, and that their impact on the type system is well-researched.

Another advantage is that they allow for easy sharing of types via delegation to a

common loader, which we use for both system-shared and user-shared classes. On

the other hand, class loaders are an inefficient way to reload a class merely to obtain

a process-local set of static variables, because our current implementation does not

share text. We were able to mitigate this disadvantage by sharing many system

classes; however, our KaffeOS implementation does not share any user classes.

We adapted Kaffe’s memory allocator to provide support for our heap model,

which includes the user heaps, shared heaps, and the kernel heap. The Kaffe

allocator consists of two layers: a small object allocator and a primitive block

allocator. We provided each process with its own small object allocator but kept

a single primitive block allocator. As a result of this implementation decision,

our implementation can defend against fragmentation attacks; however, our kernel

heap may suffer from external fragmentation. We expect that different allocators,

in particular those designed to work with precise or moving collectors, will require

different implementation decisions.



CHAPTER 5

EVALUATION

We focus on three areas in the evaluation of our KaffeOS prototype. The first

area is the run-time overhead KaffeOS introduces, when compared with a JVM

that does not provide robust support for multiple processes. One particular source

of concern is the use of write barriers for isolation, because it might be expected

to cause substantial overhead. For instance, Dillenberger et al. rejected such use

in a similar situation, reasoning that “intervention on every ‘putxxx’ operation

code would degrade performance” ([29], page 206). We show that the overhead is

reasonable when compared to the Kaffe VM upon which KaffeOS is based; we also

project that the overhead would still be reasonable if KaffeOS were implemented

on top of an industrial JVM.

Second, we evaluate KaffeOS’s effectiveness in the area for which it was designed:

supporting untrusted or buggy applications that may intentionally or inadvertently

engage in denial-of-service attacks directed at primary computing resources. We

show that KaffeOS can defend against denial-of-service attack directed at memory,

CPU time, and the garbage collector and also show that KaffeOS’s integrity is not

compromised by such attacks. We compare KaffeOS to two competing existing

approaches: running applications on top of an ad hoc layer in one JVM and

providing multiple JVMs for multiple applications. In addition to effectiveness, we

also compare scalability, as measured in the number of applications a given system

can support, and find that KaffeOS can outscale the approaches using multiple

JVMs.

Finally, we evaluate the practicality of KaffeOS’s model for interprocess commu-

nication by way of shared heaps. As discussed in Section 3.3.2, our programming



74

model introduces some restrictions. We address the question of whether these

restrictions could outweigh the advantages of being able to directly share objects.

We illustrate the impact of these restrictions on the programming model using

concrete examples. We demonstrate that KaffeOS’s shared heaps allow easy sharing

of data structures as complex as hashmaps or linked lists.

Our prototype runs as a user-mode application on top of the Linux operating

system. All our measurements were taken on a 800MHz “Katmai” Pentium III,

with 256 Mbytes of SDRAM and a 133 MHz PCI bus, running Red Hat Linux 6.2.

The processor has a split 32K Level 1 cache and combined 256K Level 2 cache. We

used the GNU C compiler (Version egcs–1.1.2) to compile the VM, and we used

IBM’s jikes compiler (Version 1.12) to compile the Java portions of the runtime

libraries.

5.1 Write Barrier Overhead

KaffeOS’s use of write barriers for isolation introduces some overhead when

running applications. In this section, we evaluate this overhead both using mi-

crobenchmarks and real application benchmarks.

To measure the cost of write barriers in KaffeOS, we implemented several

versions, which we labeled No Write Barrier , No Heap Pointer , Heap Pointer ,

and Fake Heap Pointer . The No Write Barrier version is our baseline for de-

termining the write barrier penalty. The No Heap Pointer version is the default

implementation, which has no space overhead. The Heap Pointer version is faster

than the No Heap Pointer version but increases the size of each object’s header; the

Fake Heap Pointer version serves to isolate the space impact of the Heap Pointer

version from its speed impact.

• No Write Barrier : We execute without a write barrier and run everything on

the kernel heap. We implemented this version by instructing the just-in-time

compiler not to insert a write barrier when compiling bytecode to native

code. We used C preprocessor macros to ensure that no write barrier would

be inserted in native libraries. We changed the function that creates new
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heaps to return a reference to the kernel heap instead. The merging of heaps

upon a process’s exit is an empty operation in this version. The No Write

Barrier version accounts for any possible performance impact of the changes

made to Kaffe’s runtime and provides the baseline version for examining the

write barrier overhead.

• No Heap Pointer : This version is the default version of KaffeOS. For each

small object page and for each large object, we store a heap ID in a block

descriptor. To avoid cache conflict misses, the block descriptor is not kept

at a fixed offset on the same page. Instead, block descriptors are stored in

an array, whose index values are computed as affine transformations of the

address of an object. At each heap pointer write, the write barrier consists

of a call to a routine that finds both the source and the destination object’s

heap ID from their addresses and performs the barrier checks.

• Heap Pointer : In this version, we trade some memory for speed: we increased

each object’s header by 4 bytes, which we use to store the heap ID. In this case,

extracting the heap ID is substantially faster, because the block descriptor

does not have to be read from memory to retrieve the heap ID. We coded the

fast path (i.e., where our policy allows the write to complete) for this barrier

version in assembly language.

• Fake Heap Pointer : To measure the impact of the 4 bytes of padding in the

Heap Pointer implementation, we padded the object header by 4 bytes but

did not store the heap ID in them. Instead, we determine the heap ID as

in the No Heap Pointer version. In other words, we impose the memory

overhead of the Heap Pointer version but do not take advantage of its faster

write barrier implementation.

The KaffeOS JIT compiler does not inline the write barrier routine. Inlin-

ing the write barrier code might improve performance, but it could also lead to

substantial code expansion. For instance, in the No Heap Pointer version, the
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write barrier code includes 29 instructions, plus an additional 16 instructions for

procedure calling conventions, which an inlined version may not require. Ideally,

the intermediate representation of the write barrier code should be available to a

just-in-time compiler, so that the compiler can apply heuristics to decide whether

to inline or outline on a per-call site basis.

5.1.1 Microbenchmarks

We devised microbenchmarks to determine the best-case overhead of performing

a write to a heap location. The microbenchmarks assign a reference to a location

in a tight loop using each of the PUTFIELD, PUTSTATIC, and AASTORE opcodes. We

used the Pentium cycle counter register to measure the number of cycles spent.

We subtracted the loop overhead, which we determined by counting the number of

cycles spent in an empty loop.

Table 5.1 shows the results. The overhead for the No Heap Pointer version is

roughly 43 cycles per write. The optimization used by the Heap Pointer version

substantially reduces this overhead; in the case of the PUTFIELD instruction, the

reduction is from 43 to 11 cycles. PUTFIELD and PUTSTATIC take roughly the same

number of cycles for all versions. The AASTORE instruction has a higher base cost,

but its write barrier overhead is only slightly larger. As expected, the Fake Heap

Pointer version and the No Heap Pointer take roughly the same number of cycles

for all three instructions.

Table 5.1. Best-case overhead per write barrier by type.

Version PUTFIELD PUTSTATIC AASTORE
(all numbers are in cycles) Cost Overhead Cost Overhead Cost Overhead
Base cost (No Write Barrier) 2 2 65.4
No Heap Pointer (Default) 45.0 +43.0 43.7 +41.7 110.2 +44.8
Heap Pointer 13.0 +11.0 13.0 +11.0 79.0 +13.6
Fake Heap Pointer 44.4 +42.4 44.4 +42.4 111.9 +46.5

These cycle numbers represent the best case, a tight loop executing with a hot
cache.
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5.1.2 Application Benchmarks

We used the SPEC JVM98 benchmarks [72] to evaluate the performance of

KaffeOS for real-world, medium-sized applications. These benchmarks were re-

leased in 1998 by the System Performance Evaluation Corporation (SPEC), an

organization of hardware vendors whose goal is to provide a standardized set of

relevant and application-oriented benchmarks to evaluate the efficiency of JVM

implementations. The benchmarks measure the efficiency of the just-in-time com-

piler, runtime system, operating system, and hardware platform combined. They

were chosen based on a number of criteria, such as flat execution profile (no tiny

loops), repeatability, and varying heap usage and allocation rate.

SPEC JVM98 consists of seven benchmarks: compress, jess, db, javac, mpegau-

dio, mtrt, and jack. All except db are real-life applications that were developed for

purposes other than benchmarking. An eighth benchmark, check, is used to test

the proper implementation of Java’s features in the VM; for example, check tests

that the JVM performs array bound checks. Our KaffeOS implementation passes

the check benchmark. We briefly discuss each benchmark:

• compress: This application compresses and decompresses data from a set of

five tar files using a modified Lempel-Ziv method (LZW). Each file is read in,

compressed, and written to memory. The result is read and uncompressed and

the size is double-checked against the original size. Compress is not a typical

object-oriented application in that it does not use many objects; it spends

most of its execution operating on two large byte arrays that are allocated

for its input and output.

• jess: This benchmark is a Java Expert Shell System (JESS) that is based

on NASA’s CLIPS expert shell system. An expert shell system continuously

applies a set of rules to a set of data, called the fact list. The benchmark

workload solves a set of puzzles commonly used with CLIPS. This benchmark

is computationally intensive and allocates many objects, though most are

short lived.
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• db: This synthetic benchmark simulates database operations on a memory-

resident database. It reads in a 1 MB file that contains records with names,

addresses and phone numbers. It then performs a stream of operations on

the records in the file, such as adding and deleting an address or finding and

sorting addresses.

• javac: This application is the Java compiler from Sun Microsystem’s Java

Development Kit (JDK) version 1.0.2. Its workload is the compilation of the

jess benchmark, which is several thousand lines of Java code.

• mpegcompress: This program decompresses audio files that conform to the

ISO MPEG Layer-3 audio specification. The workload consists of about 4

MB of audio data. This benchmark performs very little memory allocation

and makes frequent use of floating point operations.

• mtrt: This raytracer program renders a small scene depicting a dinosaur. It

is the only benchmark that is multithreaded; the scene is divided between

two threads.

• jack: This parser generator is based on the Purdue Compiler Construction

Tool Set (PCCTS), now known as JavaCC. The workload consists of a file

that contains instructions for the generation of jack itself.

In addition to the four different write-barrier implementations mentioned above,

we include in our comparison the version of Kaffe on which KaffeOS is based. We

use a development snapshot from June 2000 for that purpose; we label this version

“Kaffe 2000” in our benchmarks. We also include IBM’s JVM from the IBM JDK

1.1.8, which provides one of the fastest commercial JIT compilers [73] available for

JVMs that implement Java version 1.1.x. Our results are not comparable with any

published SPEC JVM98 metrics, as our measurements are not compliant with all

of SPEC’s run rules. Complying with the run rules would have required support

for the abstract windowing toolkit (AWT), which our prototype does not provide.
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We instrumented KaffeOS to determine the number of write barriers that are

executed in a single run of each benchmark. Except in the No Write Barrier case,

we run each benchmark in its own process. Table 5.2 shows how many write barriers

are executed for a single run. Except for jack, these numbers confirm the numbers

presented in Table 1 of an independent study by Dieckmann that investigated the

allocation behavior of the SPECjvm98 benchmarks [27]. We note that the total

number of writes includes not only the benchmark program but also includes writes

executed in methods that belong to the runtime libraries. We found that when the

implementation of certain runtime classes, such as java.util.Hashtable, changes,

the number of writes can change substantially. For instance, when we updated our

libraries from an earlier version of KaffeOS to the version used to create Table 5.2,

we observed a decrease from about 33.0 M to 30.1 M for the db benchmark, and

an increase from about 15.5 M to 20.8 M for javac. The lesson is that the number

of write barriers depends not only on the application but also on implementation

decisions in the runtime libraries.

Table 5.2 also shows that for almost all write barrier executions counted, the

source and destination objects lie in the same heap, which confirms our expec-

tations. Only a miniscule fraction of write barriers (less than 0.2%, except for

Table 5.2. Number of write barriers executed by SPEC JVM98 benchmarks.

Benchmark Barriers Cross-heap
Number Percent

compress 47,969 3336 6.95%
jess 7,939,746 4747 0.06%
db 30,089,183 3601 0.01%
javac 20,777,544 5793 0.03%
mpegaudio 5,514,741 3575 0.06%
mtrt 3,065,292 3746 0.12%
jack 19,905,318 6781 0.03%

“Cross-heap” counts those occurrences where source and destination do not lie in
the same heap, i.e., those for which entry and exit items must be created or updated.
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compress, which does hardly any writes) are “cross-heap,” in that they result in the

creation or update of entry and exit items. The other possible outcome produced

by a write barrier, a segmentation violation error, should not and does not occur in

these benchmarks. Differences in the number of “cross-heap” write barriers result

when applications use different kernel services. For instance, javac opens many

more files than compress.

We also examined the distribution of the instructions that trigger write barriers.

The results are shown in Table 5.3. This distribution is again very application-

dependent. For instance, db makes significant use of the java.util.Vector class,

which explains its high number of AASTORE instructions. Assignments to static

fields are typically rare, except for javac. A small number of write barriers, labeled

as “other,” are triggered inside the VM or in native library code. Since the best-case

overheads measured in Section 5.1.1 are roughly about the same for the different

bytecode instructions that trigger write barriers, the distribution turns out not to

be very important.

Figure 5.1 shows the results of running the SPECjvm98 benchmarks. We ran

each benchmark three times in the test harness provided by SPEC (in a run that

Table 5.3. Type of write barriers executed SPEC JVM98 benchmarks.

Benchmark Barriers By Type
PUTFIELD AASTORE PUTSTATIC other

compress 47,969 37,326 7,199 149 3,295
jess 7,939,746 4,037,788 3,897,103 153 4,702
db 30,089,183 3,119,214 26,966,222 188 3,559
javac 20,777,544 16,885,470 3,256,128 630,194 5,752
mpegaudio 5,514,741 5,502,039 8,986 182 3,534
mtrt 3,065,292 1,300,487 1,760,914 190 3,701
jack 19,905,318 16,368,829 3,529,429 320 6,740

The “By Type” columns list the different bytecode instructions that trigger write
barriers. The type “other” refers to assignments inside of native libraries, or within
the JVM itself. The distribution is very application-dependent.
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Figure 5.1. KaffeOS performance in SPECjvm98 benchmarks. This chart displays
the time needed to run SPECjvm98 using the provided harness. Kaffe 2000 is the
version of the Kaffe VM upon which KaffeOS is based. All Kaffe-based versions
are roughly two to eight times slower than IBM’s industrial VM. The differences
between Kaffe 2000 and KaffeOS are small, and the overheads of all write barrier
versions with respect to the No Write Barrier version are tolerable. The error bars
shown reflect the 95% confidence interval.

follows all of SPEC run rules, each benchmark is run two to four times). We set the

maximum heap size to 64 MB for each JVM. The bars show the average runtime

as displayed by the test harness, and the error bars are used to display an estimate

of the 95% confidence interval. Because of the small number of runs, the interval

does not provide a good estimate, but it demonstrates that the variance between

runs is small for most benchmarks, except for javac. Such variance can result from

different causes. For instance, initialization work in system classes has to be done
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only once during the first run. In addition, a conservative collector such as the one

used in Kaffe and KaffeOS might hold on to floating garbage only to collect it later,

which stretches the time required for a subsequent run. The SPEC benchmarks are

intended to capture these effects, which is why their run rules demand that the

JVM is not restarted after each run.

Overall, IBM’s JVM is between two to eight times faster than Kaffe 2000; we will

focus on the differences between Kaffe 2000 and the different versions of KaffeOS.

For those benchmarks that create little garbage, compress and mpegaudio, the

difference in total run time is small. For the other benchmarks, we observe a larger

difference, even between Kaffe 2000 and the No Write Barrier version of KaffeOS.

This difference is in part because of the changes we made to the runtime system

and in part because the time spent in garbage collection differs, as is shown in

Figure 5.2.

The time spent during garbage collection depends on the initial and maximum

heap sizes, the allocation frequency, and the strategy used to decide when to collect.

For instance, we found that IBM’s performance varies widely depending on its

heap management: if we do not specify a maximum heap size of 64 MB, it will

aggressively try to keep its heap very small (less than 5 MB), which increases the

time to run the jess benchmark from 8 to 24 seconds. IBM’s collector is precise and

copying, which means that its runtime is asymptotically proportional to the size of

the live heap. jess allocates many objects, but very few of them are long-lived [27],

which can explain this large variation in run time. This dependency on the garbage

collection strategy limits our ability to compare the run-time overhead of JVMs

that use different strategies.

Kaffe 2000 and KaffeOS use a simple strategy: a collection is triggered whenever

newly allocated memory exceeds 125% of the memory in use at the last GC.

However, whereas Kaffe 2000 uses the memory occupied by objects as its measure,

KaffeOS uses the number of pages as its measure, because KaffeOS’s accounting

mechanisms are designed to take internal fragmentation into account. In addition,

KaffeOS’s decision mechanism is applied to each heap independently.
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Figure 5.2. Time spent in GC for SPECjvm98 benchmarks. This chart displays
the time needed to run a single SPECjvm98 spec benchmark from start to exit.
The time spent in garbage collection is displayed in the top part of each bar. The
heap pointer optimization is effective for some applications, but not for others.

To reduce the impact of different GC strategies on our estimate of the write

barrier penalty for the SPEC benchmarks, we instrumented Kaffe 2000 and KaffeOS

to use the Pentium cycle counter to measure how much time is spent during

GC. Figure 5.2 compares the results of these experiments. Each group of bars

corresponds to Kaffe 2000, KaffeOS with a fake heap pointer, KaffeOS with heap

pointer, KaffeOS with no heap pointer, and KaffeOS with no write barrier, in that

order. The full bar displays the time between the start and the exit of the JVM,

which includes time spent in the SPEC harness. These results are for a single run
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only. The upper part of the bar shows the time spent in garbage collection. The

lower part of the bar represents the time not spent in garbage collection, which is

computed as the difference between the total execution time and the time spent

in GC. In this figure, the differences between Kaffe 2000 and KaffeOS No Write

Barrier are very small, which suggests that we do not pay a runtime penalty for

the changes we made to make the runtime libraries process-aware (as described in

Section 4.2).

Table 5.4 compares the measured overhead to the overhead that could be ex-

pected from the write barriers alone, assuming the best-case cycle counts. The

best-case overhead was obtained by multiplying the vector of cycles measured in

Table 5.1 with the distribution vector in Table 5.3 for each benchmark. The worst

overhead measured is 5.6% with respect to runtime excluding GC time; 7.7% with

respect to the total runtime without the heap pointer optimization; and 4.5% and

4.8%, respectively, if the optimization is applied. For two benchmarks that perform

a substantial number of writes, java and jack, the actual penalty is predictably

larger than the estimate obtained using a hot cache. For these two benchmarks,

the heap pointer optimization is effective in reducing the write barrier penalty.

Table 5.4. Measured vs. best-case overhead.

Benchmark Total runtime Runtime excluding GC time Total
No Heap Ptr Heap Ptr No Heap Ptr Heap Ptr IBM∗∗

compress∗ -0.5%(0.0%) 0.0%(0.0%) 0.1%(0.0%) 0.5%(0.0%) 0.7%
jess -1.1%(1.0%) 1.7%(0.3%) -0.5%(1.2%) 2.3%(0.3%) 10.5%
db 2.5%(3.8%) 4.5%(1.1%) 3.5%(4.1%) 4.8%(1.2%) 8.1%
javac 5.6%(2.5%) 3.2%(0.7%) 7.7%(3.4%) 2.9%(0.9%) 7.3%
mpegaudio∗ -1.4%(0.8%) -0.7%(0.2%) -1.2%(0.8%) -0.5%(0.2%) -1.7%
mtrt∗ 0.3%(0.5%) -0.4%(0.1%) 3.5%(0.6%) -0.1%(0.2%) -0.2%
jack 3.4%(1.9%) 2.8%(0.5%) 4.2%(2.4%) 2.4%(0.6%) 14.1%

∗ small number of write barriers. ∗∗ projected maximum overhead
In each table cell, the first number is the measured overhead; the number in
parentheses is the best-case overhead relative to the No Write Barrier version,
which was obtained by multiplying the vector of cycles measured in Table 5.1 with
the distribution in Table 5.3.
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Excluding GC, KaffeOS Fake Heap Pointer performs similarly to KaffeOS No Heap

Pointer ; however, its overall performance is lower because more time is spent during

GC.

There are some anomalies: jess runs faster with write barriers than without,

and the overhead of db is lower than the expected best-case overhead. The relative

performance order is not consistent. Without nonintrusive profiling, which we do

not have available for Kaffe, we can only speculate as to what the reasons might be.

It is possible that cache effects are to blame, since both versions have completely

different memory allocation patterns. Some internal data structures, such as the

table of interned strings, are instantiated only once in the No Write Barrier cases,

whereas they are duplicated for each heap in all other cases. Finally, since the

garbage collector collects only the user heap, we may see a small generational effect,

since fewer objects need to be walked during each process’s GC.

On a better system with a more effective JIT, the relative cost of using write

barriers would increase. The last column in Table 5.4 shows a projection for IBM’s

JDK. We used the run-time overhead (without garbage collection) and added it to

IBM’s run time and computed the overhead as a percentage of the total run time.

The projected overhead in this case lies between 7% and 14% for these benchmarks

with a large number of writes. This projection, combined with our numbers for

the frequency of writes in the SPEC JVM98 benchmarks suggest that even if the

relative cost should grow slightly, the absolute cost would very likely be tolerable.

In addition, a good JIT compiler could perform several optimizations to remove

write barriers. A compiler should be able to remove redundant write barriers,

along the lines of array bounds checking elimination. It could even perform method

splitting to specialize methods and thus remove useless barriers along frequently

used call paths. If a generational collector were used, we might also be able to

combine the write barrier code for cross-heap checking with the write barrier code

for cross-generation checking.
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5.2 Overhead for Thread Stack Scanning

As outlined in Section 3.2.2.3, each KaffeOS process must scan all threads when

garbage collecting its heap. In this section, we show that this requirement does not

lead to priority inversion between processes. It can, however, impose significant

overhead for each process, which we quantify for our current prototype.

Priority inversion could occur if one process prevented a second process from

running because it needed to stop the second process’s threads to scan them. As

shown in Figure 4.7, we stop remote threads on three occasions during the mark

phase of a heap’s garbage collection, which correspond to the three code sections

labeled “Part 1,” “Part 2,” and “Part 3.” These sections correspond to marking

entry items, scanning remote thread’s stacks, and recoloring and rewalking the

list of black items. The potential for priority inversion depends on the maximum

amount of time remote threads must be stopped. This maximum is the maximum

of the amounts of time spent in Part 1 and Part 3, combined with the maximum

amount of time spent on scanning any individual thread in Part 2. The overall

maximum, however, does not depend on the number of remote threads.

All of the aforementioned times are application-specific. In particular, the

amount of time spent in Part 1 depends on how many entry items exist in a given

heap. The time spent in Part 2 on each remote thread depends on the size of

the thread stack and on how many remote references are found on a stack. For a

downward-growing stack, the size of the thread stack is measured from the upper

end of the allocated stack area to the lowest used address in this area; the size

depends on the number and size of activation records a thread has allocated on it.

Our implementation limits a thread stack’s size to some maximum value, which is

a configurable parameter that is set to 64 KB by default. A StackOverflowError

is thrown when a thread attempts to use more stack space.

To measure the number of cycles spent in Parts 1 to 3, we started one process

that constantly collects garbage on its own heap. In parallel with that process, we

run the applications of the SPEC JVM98 benchmarks one after another in different

processes. Table 5.5 shows the results: the variance is relatively small, and the
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Table 5.5. Cycles spent on walking entry items for SPEC JVM98 Benchmarks

Walking of entry
items (Part 1)

Rewalking of marked
objects (Part 3)

Number 27,123 27,123
Mean 383,071 291,348
Maximum 500,405 495,196
Standard Deviation 34,569 24,244

average amount of cycles spent in Part 1 is 383,000 cycles and in Part 3 is 291,000

cycles. On the 800 MHz machine on which we ran this experiment, this amounts

to about 4.7% and 3.6% of one time slice of 10 ms.

To measure the number of cycles spent scanning stacks in Part 2, we used two

scenarios. In addition to the SPEC JVM98 benchmarks, we crafted a benchmark in

which a single thread executes a recursive function, pausing for 1 second every 100

steps. The execution of this function results in a monotonically increasing stack

size.

Figure 5.3 shows both measurements. The top graph shows the recursion

benchmark. For a maximum size of 221,000 bytes, the time it takes to scan the

thread is about 3,100,000 cycles, which is about 39% of a time slice on our 800 MHz

machine. This number of cycles corresponds to a maximum delay of about 4.8 ms.

The bottom graph shows the distribution for the applications of the SPEC JVM98

benchmarks. The threads of these applications typically have a much smaller stack

size than in the recursion benchmark. In the vast majority of cases, less than four

pages per thread must be scanned.

The correlation between stack size and cycles to scan the stack is linear, as

could be expected. For the SPEC JVM98 applications, the estimated slope ranges

between 23 and 28 cycles per byte. The trend lines shown in Figure 5.3 do not

capture the range of sizes between 8,000 and 10,000 bytes as well as they capture

the range between 400 and 6,000 bytes, because there are many data points for

smaller sizes. The slope for the SPEC JVM98 applications appears to be higher
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Figure 5.3. Time spent scanning remote thread stacks. These figures show the
linear dependency of the time it takes to scan a stack to the size of the stack area.
The top figure shows a synthetic benchmark that scans a single thread engaged
in successive recursive invocations. The bottom figure shows the time required to
scan each individual thread that is run during the executions of the SPEC JVM98
benchmarks.
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than the slope for the synthetic recursion benchmark. Basing our estimate on the

SPEC benchmarks, we can give an estimate for the expected overhead. For n

threads with stack sizes si, i = 1..n, we expect an overhead of roughly
∑n

i=1 28 ∗ si

cycles. As an example, for 100 remote thread stacks of 8 kilobytes average size, we

could expect about 23 * 106 cycles or about 29 ms per garbage collection. This

overhead is substantial, which is why limits on the number of threads must be

applied. In addition, there are several possible optimizations that are discussed

in Section 3.2.2.3 that could reduce the O(mn) complexity for m processes and n

threads exhibited by our current implementation.

5.3 Denial of Service Scenarios

We evaluate KaffeOS’s ability to prevent denial-of-service attacks against mem-

ory and CPU time using a Java servlet engine. A Java servlet engine provides an

environment for running Java programs (servlets) at a server. Servlets’ functionality

subsume that of CGI scripts at Web servers: for example, servlets can create

dynamic content, perform computations, or run database queries. A servlet engine

typically supports multiple, different servlets that provide web services to different

clients.

Our first goal is to ensure that in situations in which one of these servlets

misbehaves or fails, the service provided by the rest of them is unaffected. This

property depends on the ability of KaffeOS to isolate applications, and showing

this property demonstrates the effectiveness of KaffeOS’s isolation mechanisms. A

second goal is to show that KaffeOS’s approach of running multiple applications

in one JVM allows us to support more servlets than the approach that relies on

underlying OS support for isolation.

We used the off-the-shelf Apache 1.3.12 web server, its JServ 1.1 servlet en-

gine [48], and Sun’s JSDK 2.0 release of the Java servlet extensions to run our tests.

The setup is shown on the left-hand side of Figure 5.4. We modified a version of the

Apache benchmark program ab to simulate multiple clients on a single machine.

Each client issues HTTP GET requests for a specified URL on the server. On the
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Figure 5.4. Configurations for MemHog. The left-hand side shows our experimen-
tal setup: a modified version of Apache’s benchmark program ab runs on a client
machine that is connected via 100 MBit/s Ethernet to a server. The server hosts
both the Apache server with the mod jserv module and the JServ engines in which
the servlets run. The configurations are displayed on the right-hand side: IBM/n
runs n servlets per JVM; IBM/1 runs 1 servlet per JVM and uses n JVMs; and
KaffeOS runs each servlet in its own KaffeOS process.

server machine, the Apache server processes and forwards these requests to one or

more JServ servlet engines. An Apache module (mod jserv) communicates with

the servlet engines using a custom protocol called ajpv12.

Each JServ instance can host one or more servlet zones, which are virtual servers.

Although a servlet zone can host multiple, different servlets, for simplicity each

servlet zone hosts exactly one servlet in our experiment. A URL is mapped to each

servlet; the servlet is loaded when a user issues the first request for its corresponding
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URL. Servlets are kept in memory for subsequent requests; if no requests arrive for

a certain time period, they are unloaded and garbage collected.

The right-hand side of Figure 5.4 shows the different configurations we com-

pared:

• IBM/n: We run multiple servlets in one servlet engine; the servlet engine

runs in a single instance of the IBM JVM.

• KaffeOS: We run each servlet in a separate engine; each servlet engine runs

in its own process on top of KaffeOS.

• IBM/1: We run each servlet in a separate engine; each engine runs in a

separate instance of the IBM JVM in a separate process on top of the Linux

operating system.

We consider three scenarios that involve different kinds of denial-of-service

attacks. In the first scenario, we attempt to deny memory to other servlets by

running a servlet that allocates large amounts of memory until it exceeds its

limit and is terminated. We use this scenario for a second purpose, namely, to

experimentally verify that KaffeOS can terminate such applications safely. Finally,

in the second and third scenario, we examine attacks against CPU time and the

garbage collector.

5.3.1 MemHog Scenario

In this scenario, we use small “Hello, World” servlets as examples of well-

behaved servlets that provide a useful service. Alongside these well-behaved servlets,

we run a “MemHog” servlet that attempts to deny memory to them. This servlet,

when activated, spawns a thread that enters a loop in which it repeatedly allocates

objects. The objects are kept alive by linking them in a singly linked list. In the

IBM/1 and IBM/n configurations, allocations will fail once the JVM’s underlying

OS process reaches its maximum heap size. In the KaffeOS configuration, alloca-

tions will fail when the process reaches its set limit. In all three configurations, an
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OutOfMemory exception is eventually thrown in the thread that attempts the first

allocation that cannot succeed.

Because the JServ engine is a heavily multithreaded Java program and because

Java programs continually allocate objects, the OutOfMemory exception can occur

at seemingly random places and not only in the thread spawned by the MemHog

servlet. By examining backtraces we observed that these exceptions occur also at

inopportune places. In particular, a thread can run out of memory in the code that

manipulates data structures that are shared between servlets in the surrounding

JServ environment, or it can run out of memory in code that manipulates data

structures that are kept over successive activations of one servlet. Eventually, these

data structures become corrupted, which results in an unhandled exception in one or

more threads. In the KaffeOS scenario, this event causes the underlying KaffeOS

process to terminate. In the IBM/1 and IBM/n scenarios, the underlying JVM

terminates. In some instances, we observed the IBM JVM crash, which resulted in

segmentation violations at the OS process level.

When simulating this denial-of-service attack, we did what a system admin-

istrator concerned with availability of their services would do: we restarted the

JVMs and the KaffeOS processes, respectively, whenever they crashed because of

the effects caused by a MemHog servlet.

We counted the number of successful responses our clients received from the

“Hello, World” servlets during a certain period of time (30 seconds). We consider

this number an effective measure for the amount of service the system provides,

because it accounts for the effects caused by the denial-of-service attack on the

Apache/JServ system as a whole.

For each configuration, we measured the amount of service provided with and

without a denial-of-service attack. We ran the experiment with 2, 4, 8, 16, 32, 40,

48, 56, 64, 72, and 80 servlets. We allowed up to 16 concurrent connections from

the client; increasing that number further did not increase throughput. The client

rotated these connections among all servlets, so that all servlets were activated

shortly after the start of the experiment and remained active throughout the
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experiment.

Figure 5.5 shows the results. This figure shows that the KaffeOS configuration,

as well as the IBM/1 configuration, can successfully defend against this denial-

of-service attack, because the impact of the single MemHog servlet is isolated.

However, the graph shows that running each of the servlets in a single JVM, as

done in the IBM/1 approach, does not scale. We estimate that each IBM JVM

process takes about 2 MB of virtual memory upon startup. Starting multiple JVMs

eventually causes the machine to thrash. An attempt to execute 100 IBM JVMs
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Figure 5.5. Throughput for MemHog servlet. This chart displays the number
of successful requests received in 30 seconds. IBM/1 is successful at isolating the
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than 64 servlets, whereas IBM/1 cannot.
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running the Apache/JServ engine rendered the machine inoperable.

The IBM/n configuration, on the other hand, can easily support 80 servlets.

However, if the MemHog servlet is added, this configuration exhibits a severe

decrease in performance. This degradation is caused by a lack of isolation between

servlets. As the ratio of well-behaved servlets to malicious servlets increases, the

scheduler yields less often to the malicious servlet. Consequently, the service of

the IBM/n,MemHog configuration shown in Figure 5.5 improves as the number of

servlets increases. This effect is an artifact of our experimental setup and cannot

be reasonably used to defend against denial-of-service attacks.

In addition to being able to defend against the denial-of-service attack, KaffeOS

can support as many servlets as IBM/n, but its performance does not scale very

well. We identified two likely sources for the behavior. The first source are

inefficencies in the signal-based I/O mechanisms used in our prototype’s user-level

threading system. The second source is the deficiencies in KaffeOS’s memory

allocation subsystem, which we discussed in Section 4.3. Specifically, we found that

increased external fragmentation slightly increased the garbage collection frequency

of individual processes, because it became harder for them to expand their heap

even though they had not reached their limits. As discussed earlier, a moving

collector should be able to alleviate this limitation.

We conclude from these experiments that KaffeOS’s approach of supporting

multiple applications in a single JVM can effectively thwart denial-of-service attacks

directed against memory. The operating system-based approach (IBM/1) has the

same ability, but its scalability is restricted when compared to KaffeOS.

5.3.2 MemHog Stress Test

One of KaffeOS’s design goals is the ability to safely terminate an application

without affecting the integrity of the system and to fully reclaim an application’s

resources when that application is killed. We claimed in Section 3.1.3 that the

introduction of a user/kernel boundary is crucial to achieving safe termination.

The MemHog scenario can be used to verify this claim. We developed a stress test

in which we repeatedly activate a single MemHog servlet and kill it once it exceeds
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its memory limit.

We use a debugging version of KaffeOS that includes a series of internal integrity

checks for this test. For instance, we check the consistency of the internal class

table, the consistency of the primitive block table, and the consistency of the heap

free lists frequently at various points in the JVM code. If any inconsistency is

detected during one of these tests, we abort the JVM. After each kill of a MemHog

servlet, we record the overall number of bytes allocated by all heaps, as well as

Memory Consumption for MemHog Stress Test
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Figure 5.6. MemHog stress test. In this test, our driver repeatedly starts a
JServ engine, which is killed by a MemHog servlet. We plot the total number of
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that KaffeOS reclaims the memory used by a killed process almost in full. Linear
regression analysis shows a leakage of 31.5 bytes per killed process.
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the number of bytes in objects on the kernel heap. Figure 5.6 shows the results

for about one thousand kills. We found that both byte numbers remained almost

constant over time—linear regression analysis revealed a leakage of 31.5 bytes per

kill, which indicates that KaffeOS can reclaim virtually all of the memory used by

the MemHog servlet. The rise between MemHog #0 and #1, which can be seen

at the very left of the graph, is due to an increase in the size of the kernel heap.

This expansion occurs when the JServ servlet engine running the MemHog servlet

causes the lazy loading of shared system classes that the driver process did not

need.

The MemHog stress test demonstrates full reclamation when termination is

caused by the violation of resource limits. The other possible case is explicitly

requested termination. It does not have to be considered separately, because the

circumstances under which both cases occur are sufficiently similar. In KaffeOS, an

application can be killed explicitly by invoking the ProcessHandle.kill() method

on its handle, which is equivalent to issuing a kill(2) system call in Unix. The

reason for this similarity is that the MemHog servlet spawns a thread that allocates

memory on each request. When the application is killed because it reaches its limit,

several threads will typically run. As we found during debugging, any thread can

reach the memory limit first. This thread then executes the code to kill the entire

application, which includes destroying the other threads that are running—which

is just what would happen if an outside process issued a ProcessHandle.kill()

on the MemHog’s process handle. During KaffeOS’s development, we empirically

observed that the destroy requests arrive so randomly that they are almost certain

to cause corruption if we erroneously manipulate critical data structures in user

mode. When we found such bugs, we moved the corresponding code parts into the

kernel, which prevented the corruption.

We cannot claim that our prototype has the robustness and maturity of an

industrial product. MemHog will crash it at some point (between 1000 and 5000

kills), because of race conditions, overflows, and other unhandled situations or bugs

in our prototype. However, when compared to IBM/n, which typically survives only
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a few MemHogs throwing OutOfMemory exceptions, this test provides strong evi-

dence that the introduction of a user/kernel boundary is useful for the construction

of a system that is robust enough to safely terminate ill-behaved applications.

5.3.3 CpuHog Scenario

A denial-of-service attack against CPU time is harder to detect than an attack

against memory, because it can be difficult to determine whether a servlet’s use of

the CPU provides a useful service or is merely wasting CPU time. This dissertation

does not aim to provide a general solution to this problem. Instead, we show how

our CPU management mechanisms can be used to ensure that a servlet’s clients

obtain the share of service that is provisioned for them, even in situations in which

another servlet attempts to use more than its share.

We adopt the view that using the CPU when it would otherwise be idle is

harmless. In systems that bill users for CPU time used, this view would not be

appropriate. We consider a successful denial-of-service attack against the resource

CPU a situation in which an important task cannot get done or is being done

much slower, because the CPU is used by some other, less important task. Our

scheduling scheme cannot limit the amount of CPU time a process consumes: it

can only guarantee a certain amount to processes that are runnable.

We developed an MD5-Servlet as an example of a servlet that performs a

computationally intensive task. MD5 is a one-way hash function that is used to

digitally sign documents [65]; hence, this servlet could be seen as representative of

an application that provides notary services over the World Wide Web. For each

request, the servlet computes the MD5 hash function over the first 50,000 words of

the /usr/dict/word dictionary file. As a measure of service, we use the number of

successfully completed requests per second. Our modified version of ab estimates

this number of requests per second simply by inverting the time difference between

consecutive responses. In addition to the MD5 servlet, we used a “CPUHog” servlet

that executes an infinite loop in which it does not voluntarily yield the CPU to other

threads.

For the purposes of this experiment, we added a small scripting mechanism to
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the servlet driver that spawns JServ servlet engines for the different servlet zones.

A script sets up a possible scenario in which a hog is activated and in which CPU

shares must be adjusted so as to thwart a possible denial-of-service attack. Each

entry in a script specifies a set of CPU shares that are assigned to the servlet engines

spawned by the driver.

Table 5.6 shows one such script for three MD5 servlets (A, B, and C) and one

CPUHog. Initially, all servlets start out with equal shares of 1/4 each. Because the

fourth servlet zone has no servlet running, we expect the three servlets to split the

excess CPU time among them, which will give each MD5 servlet 1/4 + 1/4/3 = 1/3

of the CPU. After a few seconds have passed, we manually activate the CPUHog

servlet by issuing a request for its associated URL. Once the CPUHog servlet is

activated, it immediately uses its full share, which eliminates the excess CPU time

of 1/4 that was previously shared among A, B, and C. At this point, the Hog is

limited to a 1/4 share of the CPU. In our script, we assume that some mechanism

detects that this CPU consumption by the Hog is undesirable and that the CPU

should go entirely to the MD5 servlets doing useful work. To achieve this goal, the

script instructs the driver to set the share of the Hog to zero, after which the three

MD5 servlets should again split the CPU evenly at 1/3 each. Finally, let us assume

that servlet C’s throughput should be increased to 1/2 of the server’s capacity (as

would be the case if it were decided that C provide some kind of premium service

for a selected group of users). Servlet C’s share is increased to 1/2, and A and B’s

Table 5.6. Expected results for CpuHog and Garbagehog scenarios.

Timeline Assigned Shares Service Share Obtained
A B C Hog A B C Hog

A, B & C active 1/4 1/4 1/4 1/4 1/3 1/3 1/3 0
Hog starts 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4
Hog’s share set to zero 1/3 1/3 1/3 0 1/3 1/3 1/3 0
C’s share increased 1/4 1/4 1/2 0 1/4 1/4 1/2 0

The left-hand side shows the assignment of shares, the right-hand side shows the
expected share of service.
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shares are reduced to 1/4, after which we expect to see an identical ratio in the

observed throughput of these three servlets.

Figure 5.7 shows our results for the CPUHog servlet. When activated, the

CPUHog servlet simply sits in a loop and consumes CPU cycles. The results

displayed in the graph match the expected results from the scenario in Table 5.6.

The graph is stacked; i.e., the area between the lines indicates what share each

servlet received. The straight line at the top was determined by measuring the

aggregate average throughput of the MD5 servlets with no Hog. It provides an

approximation of the maximum throughput capacity in our system. The CpuHog’s
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area is computed as the difference between this expected maximum capacity and

the sum of the throughputs of the A, B, and C servlets.

For implementation reasons, we give each task (even those with no share) at

least one ticket in the stride scheduler. This implementation artifact accounts for

the slight periodic dents at the top, in which the CPUHog gets to run for a brief

period of time, despite having been assigned a zero share. We disallow zero tickets to

avoid having to provide for CPU time to execute the exit code for applications whose

share is reduced to zero—other policies for handling this situation are possible.

5.3.4 GarbageHog Scenario

In the third and last scenario, we replaced the CPUHog servlet with a “Garbage-

Hog” servlet that attempts to hog the garbage collector. The GarbageHog servlet

produces some garbage at each invocation; specifically, it allocates 25,000 objects of

type Integer. Unlike the MemHog servlet, it does not keep those objects alive but

drops all references to them. The garbage collector has to collect these objects

to reclaim their memory. Unlike the CpuHog servlet, the GarbageHog servlet

serves requests: in this respect, it resembles a well-behaved servlet, except for

its generation of excessive and unnecessary garbage.

The GarbageHog scenario’s results are shown in Figure 5.8. The results are

similar to the CpuHog, which indicates that KaffeOS is successful at isolating the

garbage collection activity of this servlet. In other words, it demonstrates that we

were successful in separating the garbage collection activities of different processes.

The garbage collector is no longer a resource that is shared between processes but

has become an activity within a process that is subject to the stride scheduler’s

scheduling policy, along with all other activities in the process.

We must caution that our results are only approximate, in that we do not

measure how accurately our prototype’s stride scheduler assigns CPU time. Wald-

spurger [84] discussed stride scheduling as a scheduling mechanism and showed it

to be accurate and effective. Our results demonstrate that KaffeOS’s mechanisms

can successfully defend against certain denial-of-service attacks that are directed

at CPU time. The attacks can either be targeted directly at CPU time, as in the
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Figure 5.8. Throughput for GarbageHog scenario. This stacked graph shows
the measured throughput over time for the scenario described in Table 5.6. The
measured throughput matches the expected throughput in this scenario, which
proves that the garbage collection activity of the GarbageHog servlet can be
controlled independently of the garbage collection activity of the other processes.

case of the CPUHog servlet, or indirectly, as in the case of the GarbageHog servlet.

Furthermore, we showed that KaffeOS can provide different processes with different

amounts of CPU time, which allows for the implementation of user-defined resource

policies.

5.4 Sharing Programming Model

To evaluate the practicality of our model for direct sharing and to investigate

its impact on the programming model, we implemented a number of programs that
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share different data structures. As proof of feasibility, we implemented a small

subset of the Java 1.2 collection API under the shared programming model. We

first list some of the restrictions on shared heaps and how they affect programming,

and then provide specific examples.

• Shared heaps remain fixed in size after their creation. Consequently, all

required objects must be allocated while the shared heap is being created.

Some collection types, such as java.util.LinkedList, use cells that contain

a reference to an item in the list and a next and prev pointer. In an

unrestricted implementation, these cells are allocated via new when an element

is inserted in the list; they become unreachable and eventually subject to

garbage collection when an element is deleted. On a KaffeOS shared heap,

we cannot allocate new cells after the heap is frozen. Furthermore, because

there is no way to reclaim and reuse memory, we cannot afford to discard

removed cells. Instead, we must manage cells manually, which can be done

by keeping them on a separate freelist.

• Shared objects cannot allocate data structures lazily. As discussed in Sec-

tion 3.3.2, this requirement implies that all link-time references be resolved

and all bytecode be translated into native code before freezing a shared heap.

This requirement also affects certain programming idioms in the Java code.

For instance, the java.util.HashMap.keySet() method returns a Set object

that is created and cached on the first call. Subsequent invocations return

the same Set object. In our programming model, this object must be created

and cached before the shared heap is frozen; for instance, by allocating the

Set object eagerly in the constructor of HashMap.

• All entry points into the shared heaps must be known. This requirement

follows from the fact that the shared heap’s size is fixed once the heap

is frozen, and therefore no entry items can be allocated afterwards. An

OutOfMemoryError is thrown if a user process attempts to create an entry

item after a heap is frozen. To circumvent this restriction, we introduced an
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API function that allows the reservation of entry items for specified objects

while the heap is created. This function preallocates the entry item; when

the write barrier code detects that a reference to the object is written to a

user heap, it will not attempt to allocate a new entry item, which would fail,

and will use the preallocated entry item instead.

Shared classes must be careful to reserve entry items for all objects to which

a user heap might acquire references later. Such references are often needed

in the implementation of iterator objects for collection classes. To maintain

encapsulation, such iterator objects are often implemented as nonstatic inner

classes. Nonstatic inner classes are linked to an instance of their encapsulating

class through a compiler-generated hidden private field this$0. When an

iterator object is created on a user heap, a reference to the collection object

is written to this field, which creates a cross-heap reference that requires an

entry item for the collection object.

One alternative to explicitly reserving entry items would be to provide for the

worst case and reserve entry items for all objects that are allocated during

the creation of the shared heap. However, these objects also include private

objects that are never exported, as well as objects that are part of the shared

metadata, which is why we rejected that option. One entry item takes up 12

bytes in our implementation.

• No references to objects on user heaps can be created. We must avoid as-

signments to fields in shared objects, unless the object to which a reference

is being assigned is known to also reside on the same shared heap. This

requirement precludes the storage of temporary objects, which are allocated

on user heaps, in fields of shared objects. Instead, references to such objects

must be restricted to local variables on the stack.

5.4.1 Example: java.util.Vector

The java.util.Vector class provides a simple container for objects of different

types. Vectors are like arrays of arbitrary objects, except that they can automati-
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cally grow and shrink and that they can be used as collections and lists. They im-

plement the Collection and List interfaces and the iterators that these interfaces

provide. The Vector class also supports the old-style java.util.Enumeration

interface from JDK 1.1. The full API can be found in [17].

The Vector class can be used on a shared heap without any code changes.

However, if enumerations or iterators are to be used on a Vector object, an entry

item must be reserved for the vector instance. Figure 5.9 shows an example

of a shared object of type shared.ShVector that uses a shared vector. In the

constructor, the vector is populated, and an entry item is reserved. The dump()

method, which is invoked after the heap is frozen, calls elements() in the usual

fashion. The Enumeration object shown in the figure is returned by the elements()

method.

Table 5.7 lists those methods of Vector whose behavior is affected when the

Vector instance is on the shared heap. No other methods are affected.

Table 5.7. Affected methods of java.util.Vector if instance is located on a
shared heap.

Method Impact
add, addAll,
addElement,
insertElementAt,
ensureCapacity,
set, setSize,
setElementAt

These methods can fail with OutOfMemoryError if
the elementData[] array needs to be reallocated. If
elements are to be added, ensureCapacity() should
be invoked before the heap is frozen. In addition, a
SegmentationViolationError can be thrown if an
attempt is made to insert an object that is not on
the shared heap.

Vector(Collection) This constructor throws a SegmentationViola-

tionError if an element of the collection is not on
the shared heap.

copyInto, clone,
toArray

Because these methods allocate Object[] arrays on
the user heap into which the elements of the vector
are copied, they require that entry items have been
reserved for the elements, or else OutOfMemoryError
is thrown.
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Object elementData[]

...
java.util.Vector

class Vector {
   Enumeration elements() {
      return new Enumeration() {
          int index;
          ...
      }
   }
}

Vector this$0

int index

Shared Heap

Enumeration

User Heap

package shared;
public class ShVector {

private Vector vec;

// constructor
public ShVector() {

...
vec = new Vector();
while (...) {

vec.addElement(...);
}
// reserve entry item for this$0 field in Enumeration
Heap.getCurrentHeap().reserveEntryItem(vec);

}

// invoked after heap is frozen
public void dump(PrintStream stream) {

Enumeration e = vec.elements();
while (e.hasMoreElements())

stream.println(e.nextElement());
}

}

Figure 5.9. Use of java.util.Vector on a shared heap. Except for the reser-
vation of an entry item for the vector object in the constructor, no programmatic
changes are necessary. The entry item is needed to allow for the Enumeration
object that is returned by Vector.elements().
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5.4.2 Example: shared.util.HashMap

The java.util.HashMap class provides a generic hashtable implementation.

Kaffe’s implementation uses an array of buckets, each of which is an anchor to a

singly linked list of Entry objects. Each Entry object consists of a next field and

two fields that hold references to a (key, value) pair of objects. A hashmap provides

methods that return handles to its key and value sets in the form of Set objects,

which in turn provide iterators. The key and value set objects are implemented

in an abstract base class AbstractMap, which allows their implementations to be

reused for other map types besides HashMap.

In KaffeOS’s implementation, the use of iterators on a heap requires direct

pointers to the list entries in the hashtable. Consequently, we must reserve entry

items for all Entry objects. However, for encapsulation reasons, these objects are

private; i.e., they are not visible to a user of java.util.HashMap. Hence, we

were unable to use the hashmap implementation unchanged; instead, we created a

sharable variant of HashMap in the shared.util.* package.

Our implementation is shown in Figure 5.10. It differs from the original imple-

mentation only in three aspects.

1. It is in the shared.util package instead of the java.util package. As

a side effect, we had to create shared.util.AbstractMap as well, albeit

without changing java.util.AbstractMap, because HashMap.clone() relies

on package access to fields in AbstractMap. Alternatively, we could have

added the shared hashmap implementation under a different name to the

java.util package, but we did not want to needlessly modify the content of

the java.util.* package, which is part of the Java standard API. We did

not duplicate the Map interface in the shared.util package: hence, shared

hashmaps can be used wherever java.util.Map instances can be used.

2. It allocates its keyset set (and values collection, which is treated analo-

gously) eagerly in the constructor.

3. It reserves entry items for all entries and the key and value collections.
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package shared.util;
import java.util.Map;

public abstract class AbstractMap
implements Map

{
Set keyset;
...
public Set keySet() {

// create on demand and cache
if (keyset != null) {

return keyset;
}

keyset = new AbstractSet() {
...
// map key iterator to
// entry set iterator
public Iterator iterator() {
return new Iterator() {

private Iterator i
= entrySet().iterator();

public Object next() { ... }
...

};
}

}
return keyset;

}
...
public abstract Set entrySet();

}

public class HashMap
extends AbstractMap
implements Map, Cloneable,

Serializable
{

public HashMap(...) {
...
Heap h = Heap.getCurrentHeap();
h.reserveEntryItem(keySet());

}
...
public Object put(Object key,

Object val) {
Entry e;
...
// Create and add new entry
e = new Entry(key, val);
Heap h = Heap.getCurrentHeap();
h.reserveEntryItem(e);
e.next = table[bucket];
table[bucket] = e;
...

}

public Set entrySet() {
return

new AbstractMapEntrySet(this) {
public Iterator iterator() {

return new EntryIterator();
}
...

};
}

private class EntryIterator
implements Iterator

{
private Entry next, prev;
private int bucket;
public Object next() { ... }

}
}

Figure 5.10. Implementation of shared.util.Hashmap. By copying the code of
java.util.HashMap and making slight modifications, we were able to create an
implementation of a hashmap that is suitable for use on KaffeOS’s shared heaps.
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Figure 5.11 discusses the interheap connections that are created if an iterator

for the set of keys in the hashmap is created. Table 5.8 lists those methods of

shared.util.HashMap whose behavior differs from java.util.HashMap. All other

methods behave in the same way. In particular, the entrySet, values, and keySet

behave as defined in the API specification; they return sets and collections with

the same types that a java.util.HashMap instance would return.

Both the shared vector and the shared hashmap implementations provide exam-

ples of immutable data structures. An instance in which the hashmap could be used

might be a dictionary that is built once but accessed frequently. If the dictionary

changes infrequently, discarding the shared heap that contains the hashmap and

copying and updating the hashmap on a newly created shared heap should be

viable.

5.4.3 Example: shared.util.LinkedList

A service queue is a common communication idiom that is used in client and

server applications. The java.util.LinkedList class provides a doubly linked list

implementation that can be used for this purpose. Unlike a hashmap, there are few

Table 5.8. Affected methods of shared.util.Hashmap if instance is located on a
shared heap.

Method Impact
put, putAll These methods will fail with OutOfMemoryError be-

cause they would require the allocation of a new
HashMap.Entry object.

HashMap(Map) This constructor throws a SegmentationViola-

tionError if a key or value of the map is not on
the shared heap.

clone Because these methods create objects on the user
heap that refer to the keys and values in the hash-
map, they require that entry items have been re-
served for the keys and values, or else OutOfMemory-
Error is thrown.
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Object table[]

int size

Set keySet

float loadFactor

HashMap this$0

AbstractMapEntrySet

Iterator

Iterator i

AbstractSet this$0

HashMap this$0

Entry prev, next

int bucket

EntryIterator

AbstractSet

...

HashMap this$0

shared.util.HashMap

Entry next

Object key

Object value

Entry

User Heap

Shared Heap

Figure 5.11. Use of shared.util.HashMap on a shared heap. This figure shows
the objects involved in iterating over the set of keys in the hashmap. The keyset
field in the hashmap object refers to an AbstractSet allocated eagerly on the shared
heap. Its iterator() method returns an anonymous Iterator object, which in
turn refers to a HashMap.EntryIterator object upon which its implementation is
based. This entry iterator object is obtained from a call to HashMap.entrySet(),
which allocates an AbstractMapEntrySet object and a subsequent invocation of
the entry set’s iterator method. In KaffeOS, the use of iterators for hashmaps on
a shared heap is unconstrained, because our implementations allocate the key set
eagerly and reserve entry items for all Entry objects (not shown in the figure). See
Figure 5.10 for accompanying code.
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uses for a queue that do not involve changing the queue’s elements. We therefore

adapted the implementation to allow for the addition and removal of elements to

the queue. Because shared heaps are a fixed size, addition is only possible as long

as the total number of added elements does not exceed maximum number specified

when constructing the shared.util.LinkedList object.

The modifications that were applied to LinkedList are discussed in Figure 5.12.

Figure 5.13 sketches the object instances involved. As with shared hashmaps, each

list cell requires the reservation of an entry item.

Table 5.9 lists those methods of shared.util.LinkedList whose behavior

differs from java.util.LinkedList. All other methods behave in the same way;

in particular, iterator() returns an object of type java.util.Iterator, and the

shared.util.LinkedList itself can be used as a java.util.List instance.

Putting It All Together : To provide an example of how KaffeOS’s shared heaps

can be used for interprocess communication, we used the shared hashmap and

Table 5.9. Affected methods of shared.util.LinkedList if instance is located
on a shared heap.

Method Impact
LinkedList() This constructor’s signature was changed to take an

integer argument (LinkedList(int)); the argument
specifies the maximum number of elements in the
list.

LinkedList

(Collection)

This constructor throws a SegmentationViola-

tionError if an object in the collection is not on
the shared heap.

add, addAll,
addFirst, addLast,
set

If the number of elements exceeds the available ca-
pacity, an OutOfMemoryError is thrown. If the ele-
ment is located on the user heap, a Segmentation-

ViolationError is thrown.
clone, toArray Because these methods create list elements on the

user heap that refer to the original list elements, they
require that entry items have been reserved for these
elements, or else OutOfMemoryError is thrown.



111

package shared.util;

public class LinkedList
extends AbstractSequentialList
implements List, Cloneable, Serializable

{
Elem head = null;
Elem tail = null;
private Elem freelist;

// get a fresh Elem cell
private Elem getElem(Object o) {

Elem next = freelist;
if (next == null) {

throw new OutOfMemoryError();
}
freelist = freelist.next;
next.o = o;
next.next = next.prev = null;
return next;

}

// recycle used Elem cells
private Elem putElem(Elem e) {

Elem oldnext = e.next;
e.next = freelist;
freelist = e;
return oldnext;

}

// preallocate cells
public LinkedList(int n) {

Heap h = Heap.getCurrentHeap();
for (int i = 0; i < n; i++) {

Elem e = new Elem(null);
h.reserveEntryItem(e);
putElem(e);

}
h.reserveEntryItem(this);

}

public void addFirst(Object o) {
...
// was: e = new Elem(o);
Elem e = getElem(o);
...
if (length == 0) {

head = tail = e;
} else {

e.next = head;
head.prev = e;
head = e;

}
...

}

public Object removeFirst() {
...
Object rtn = head.o;
// was: head = head.next
head = putElem(head);
if (head == null) {

tail = null;
} else {

head.prev = null;
}
...
return rtn;

}

class LinkedListIterator
implements ListIterator

{
LinkedList.Elem elem;
...
public Object next() { ... }

}
}

Figure 5.12. Implementation of shared.util.LinkedList. To make the linked
list implementation suitable for inclusion on a shared heap, we manually manage a
number of preallocated Elem cells. Compared to the original code in java.util.-
LinkedList, we added a freelist field and methods getElem and putElem to get
and put elements on the freelist. In the rest of the code, we replaced all calls to new
Elem(...) with calls to getElem, as shown in the addFirst method. In addition,
we carefully inserted calls putElem in those places where a list element is discarded,
as, for example, in removeFirst.



112

Elem freelist

Elem head

int length
...

Elem tail

Elem next

Object o

Elem

Elem prev

shared.util.LinkedList

Shared Heap

LinkedListIterator

LinkedList.Elem elem

LinkedList this$0

User Heap

Figure 5.13. Use of shared.util.LinkedList on a shared heap. Our implemen-
tation of shared.util.LinkedList, which can be used for queues, adds a freelist
of Elem objects to store elements not currently in use. The queue is bounded by
the number of Elem cells that are preallocated. When an object is added to the
list, a cell is moved from the freelist onto the doubly linked list headed by head;
the cell is moved back onto the freelist when the object is removed. The use of
LinkedListIterator instances is unconstrained since we reserve entry items (not
shown in figure) for all elements and the LinkedList instance itself. See Figure
5.12 for accompanying code.

linked list classes to implement a servlet microengine, whose code is shown in

Appendix B. Unlike the Apache/JServ engine, this engine does not implement the

full Java servlet API; however, the example is sufficiently complete to illustrate

KaffeOS interprocess communication by way of shared heaps.

The example includes three processes: a http server process and two servlet

engine processes. The server and servlet processes share a queue for http requests

on a shared heap. The http server receives http GET requests, examines the uniform

resource locator (URL) contained in the request, and chooses the servlet to which
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to dispatch the request. In our example, the servlets perform identical functions,

although there is of course no such restriction in the general case. Each servlet waits

for requests on its queue and processes incoming requests. The servlets perform

a lookup in a German-English dictionary and display the result to the user. The

dictionary is stored in an object of type shared.util.HashMap located on a second

heap that is shared between the servlet processes.

5.4.4 Extensions

The restrictions on our shared programming model directly result from two

independent assumptions. The first assumption is the desire to avoid sharing

attacks and guarantee full reclamation, which provides isolation between processes.

This goal requires the use of write barriers to prevent illegal cross-heap references.

The second assumption is our desire to prevent programs from asynchronously

running out of memory. For this reason, all sharers are charged, which in turn

requires that a shared heap is frozen after creation so as to accurately charge all

sharers. In some situations, we might be able to relax this model somewhat.

For instance, sharing attacks cannot occur through a shared heap when it is

known that all sharers terminate at around the same time. Although this is not

typically true for client-server systems, it often holds when different processes co-

operate in a pipe-like fashion. In this situation, we could relax the first assumption

and would not need to prevent cross-references from the shared heap to the user

heaps of the participating processes, because we would know that all user heaps

and the shared heap (or heaps) are merged with the kernel heap once the processes

terminate.

The second assumption could be relaxed when all communicating processes

share a soft ancestor memlimit; we do not need to double charge in this case.

This situation could occur if the processes trusted each other. As discussed in

Section 3.4.1, if multiple processes share a soft parent memlimit, they are subject

to a summary limit. They then have to coordinate not to exceed that limit. In this

scenario, the shared heap could be associated with a memlimit that is a sibling of all

the memlimits of the sharing processes. The sharing processes must avoid situations
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in which a process cannot allocate memory on its heap because another process

allocated too much memory on a heap that is shared by both. This extension

would require the provision of an API that would allow untrusted user threads to

decide from which heap allocations should be performed.

Another possible extension would be to garbage collect shared heaps after they

are frozen. However, unlike for user heaps, the memory reclaimed from unreachable

objects would not be credited back to a shared heap but would be used to satisfy

future allocations from the shared heap instead. This scenario would also require an

API function that allowed untrusted threads to allocate new objects from a shared

heap. Adding such memory management facilities would eliminate the need for

manual memory management, such as the freelist scheme used to manage elements

in shared.util.LinkedList objects, which we described earlier.

However, there are possible drawbacks with such a scheme: First, if a conser-

vative collector is used, unreachable objects may be kept alive as floating garbage,

which is outside the programmer’s control. Therefore, it is not guaranteed that

unreachable objects can be reclaimed in time to satisfy a future allocation. This

uncertainty would imply that a process could not rely on being able to allocate

new objects, which is undesirable. Even if a precise collector were used, meticulous

assignments of null values to locations that hold references to dropped objects are

needed to avoid memory leaks; such a programming model is error prone. Second,

buggy code might inadvertently allocate objects on a shared heap. Such bugs could

cause a shared heap to run out of memory at some unspecified point in the future,

which would make them hard to debug. For these reasons, we did not implement

this alternative.

5.5 Summary

We performed a series of experiments to evaluate how our KaffeOS prototype

achieves KaffeOS’s design goals. The first group of experiments was designed to

measure the overhead introduced by KaffeOS, when compared to a JVM that does

not provide isolation and resource management for processes. The second group
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of experiments was designed to show that our prototype achieves KaffeOS’s design

goals and that achieving these design goals provides significant practical benefit.

Our first set of experiments examined the overhead introduced by KaffeOS.

This overhead stems from both its use of write barriers and changes we made to

the underlying Kaffe JVM to support multiple processes. Our main result is that

this overhead is not prohibitive. However, we were unable to pinpoint the exact

contribution of the write barriers to the total overhead observed. Our measurements

showed a total run-time overhead of less than 8%. A conservative estimate of the

expected overhead if we integrated KaffeOS’s write barrier code in a state-of-the-art

JVM puts the maximum run-time overhead at 14%. Because the total overhead

remains reasonable, we conclude that the use of write barriers for memory isolation

and resource control is practical.

KaffeOS’s separate, per-heap garbage collection requires that each process has

accurate information about references on remote thread stacks that are pointing to

its heap. This requirement imposes an additional burden on the garbage collector.

Examining the stacks of threads in other processes has the potential to become a

source of priority inversion should one process need to stop the threads in other

processes to perform those scans. Our implementation of thread stack scanning is

simple in that it scans every remote thread every time without sharing any results

between collectors. We found that this implementation does not become a source

of priority inversion, because remote threads do not have to be stopped for long

periods of time. The total execution time of our algorithm depends on the total

number of threads in the system, which must therefore be limited. We conclude

from these experiments that our design, which requires taking possible references

from remote threads into account, can be implemented in a way that only slightly

affects the isolation provided between processes.

We examined the behavior of our prototype under denial-of-service scenarios,

both those directed at memory and at CPU time. For memory, the principal line

of defense is to limit an offending process’s memory use and to kill it if it attempts

to use more than its limit. KaffeOS isolates different processes, which is why it
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is able to terminate the offending process safely and to reclaim virtually all of its

memory. Hence, the impact of a denial-of-service attack can be contained to the of-

fending process; unrelated processes continue to be able to deliver service to clients.

Our prototype’s ability to defend against such attacks is a direct consequence of

KaffeOS’s design.

Our strategy for preventing denial-of-service attacks against CPU time or the

garbage collector is to guarantee that well-behaved tasks obtain enough CPU time

to complete their tasks. This strategy requires that there are no significant sources

of contention between processes and that all activity that is done on behalf of

a process is accounted for in the context of that process. KaffeOS’s garbage

collection scheme allows a process’s garbage collection activity to be accounted

for in the context of that process. This separation of garbage collection eliminates

an important source of contention, which enables KaffeOS to successfully defend

against denial-of-service attacks directed at CPU time.

Our final concern in this chapter was the practicality of the model for direct

sharing and its impact on programs. A program could behave differently than when

run in a standard JVM in two ways: it could run out of memory because shared

heaps are fixed after creation, and it could throw segmentation violation errors if it

tries to write pointers to its heap into a shared heap. We showed that despite these

restrictions, processes are able to easily and directly share complex data structures

such as vectors, hashmaps, and lists. In addition, such shared collection classes can

implement standard collection interfaces, which facilitates seamless integration into

existing applications. We gave examples of how existing classes can be adapted for

this programming model and how applications can make use of shared heaps in

a servlet microengine application. We conclude that our model of direct sharing

provides a viable way for processes to communicate while preserving the constraints

imposed by isolation and resource control.



CHAPTER 6

RELATED WORK

The discussion of related work is divided into three sections. In the first section,

we discuss work that is based on or directly related to Java. In the second section,

we discuss KaffeOS’s relationship to other work in the area of garbage collection

and resource management. Finally, we conclude by comparing KaffeOS to operating

systems, including those that—like KaffeOS—use a single address space and those

that exploit language mechanisms for extensibility.

6.1 Java-based Systems

Several other researchers and developers have built systems for Java applications

that address some of the problems KaffeOS is designed to address. Early sys-

tems [4, 8, 68] provided simple multiprocessing facilities for Java without addressing

isolation and resource management. Other systems focused on the increased scala-

bility that can be obtained by running multiple applications in one JVM [21, 29, 55],

but they do not address resource control. We compare KaffeOS to systems that also

provide process models for Java but that use different approaches, make different

assumptions about the environment in which they run, or use different sharing

models [42, 80, 81]. Finally, we discuss Java-based systems that are related with

respect to either goals or mechanisms but that address only a single issue, such as

resource control [25], memory management [14], or termination [67].

6.1.1 Early Java-based Systems

One of the earliest systems that aimed at providing the ability to run multiple

applications within the same Java virtual machine was described by Balfanz [4].

His modified JVM provides different applications with different namespaces and
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the illusion of executing in a JVM by themselves. However, there was no isolation

beyond namespace separation: none of the computational resources was accounted

for, and applications could not be safely terminated.

Sun’s first JavaOS [68] provided an environment in which to run Java programs

in a JVM without a separate underlying operating system. Its primary goal was

to implement as many OS subsystems as possible in Java, such as device drivers

and graphics drivers. Applications were assumed to be cooperative, and there were

no mechanisms to deal with uncooperative applications. For instance, applications

were notified of a low memory situation and asked to reduce their resource usage

voluntarily.

The Conversant project prototyped a system [8] whose goals were to provide

quality of service guarantees for mobile Java code. Written for the Realtime Mach

OS, it mapped Java threads onto real-time native threads. The Conversant system

did provide separate heaps for multiple applications in a JVM. However, it did not

provide a way for applications to share objects and resources nor did it allow for

safe termination.

6.1.2 Industrial Scalable Java Virtual Machines

IBM designed and built a scalable JVM for its OS/390 operating system that

is targeted at server applications [29]. Its main goal is to reduce the overhead

associated with starting up multiple JVMs by allowing multiple JVM instances to

share static data and classes. The OS/390 JVM can be run in two modes: in a

resource-owning mode or in a worker mode. Each JVM instance runs in its own

operating system process, but a resource-owning JVM can share system data with

multiple JVMs running in worker mode. These data, which primarily consist of

resolved classes, are allocated on a shared heap that is accessible to all worker

JVMs. This shared heap is comparable to KaffeOS’s kernel heap. Like in KaffeOS,

each worker JVM also has a local heap from which it allocates local objects. Worker

JVMs can be reused between applications if the applications that run in them are

well-behaved. An application is considered well-behaved if it leaves no residual

resources such as threads or open file descriptors behind. If an application has been
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well-behaved, the heap of the worker JVM is reinitialized and another application

is run. If it was not, the worker JVM process exits and relies on the operating

system to free associated resources.

Unlike KaffeOS, IBM’s JVM is not concerned with protecting applications

from untrusted code. It assumes that the resource-owning and the worker JVMs

cooperate. For instance, every JVM can place classes in the shared heap area;

access to the shared heap is not controlled. Local heaps are garbage collected

separately; however, the question of how to handle cross-references does not arise

because IBM’s shared heap is not garbage collected. These design decisions suggest

that IBM’s system would be inadequate when dealing with malicious applications

that could engage in sharing attacks. The system also does not appear to address

the issue of safely terminating uncooperative applications.

Oracle’s JServer environment [55] provides a Java virtual machine to support

such server-side technologies as enterprise beans, CORBA servers, and database

stored procedures. It provides virtual virtual machines or VVMs for such appli-

cations. VVMs use very little memory (as little as 35 KB for a “Hello, World”

application.) All system data are shared between VVMs. A VVM’s local storage

area can be garbage-collected separately. Like IBM’s OS/390 JVM, Oracle JServer

primarily focuses on increasing scalability by reducing per-session memory usage

and is unable to cope with untrusted or failing code in a robust manner.

Czajkowski [21] describes a way to avoid the use of classloaders to achieve the

same effect as reloading classes for multiple applications. His scheme logically du-

plicates the static fields of a class for all applications using that class. Additionally,

static synchronized methods—which according to Java’s semantics acquire a lock

on the Java class object—are changed to acquire per-application locks.

Two implementations of this scheme are presented: one implementation in

pure Java that relies on rewriting bytecode and an implementation integrated

into KVM, which is a small Java interpreter for the PalmPilot portable device.

The bytecode approach replaces all accesses to static fields with calls to accessor

functions. Despite the high run-time overhead of this approach, it outperforms
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a class loader-based approach in the number of applications that can be run in

one JVM, because only a single copy of each class is loaded for all applications.

Because class loaders are not used, running different versions of a given class is

more complicated in this approach.

KaffeOS uses class loaders to provide multiple copies of static fields for some

system classes, but it could benefit from a faster and more memory-efficient mech-

anism such as the one used in KVM. KaffeOS’s design does not hinge on which

mechanism for locally replicating static fields is chosen. In addition, much of the

memory savings could be obtained by optimizing Java’s class loading mechanism. In

particular, a VM could share internal data structures if it recognized when different

class loaders reload the same class.

In a follow-up project, called the Multitasking Virtual Machine (MVM) [23],

Czajkowski and Daynès modified the HotSpot virtual machine to support safe,

secure, and scalable multitasking. MVM’s design extends the approach to class

sharing developed in their earlier work. Unlike KaffeOS, it deliberately does not

support a way for applications to directly share user data.

In MVM, a runtime component is either fully replicated on a per-task basis

or it is shared. Read-only state can be trivially shared. Writable globally shared

state, which KaffeOS manipulates within its kernel, is manipulated in separate

server threads instead. The services provided by these threads include class loading,

just-in-time compilation and garbage collection. These servers service requests from

application threads one at a time. This approach does not require user threads to

directly manipulate shared state and thus simplifies task termination, but it can

incur context-switching overhead; in addition, because requests are serialized, access

to such shared components can become contended.

6.1.3 J-Kernel and JRes

The J-Kernel system by Hawblitzel et al. [42] is a layer on top of a standard JVM

that adds some operating system functionality. Its microkernel supports multiple

protection domains called tasks.

Communication in the J-Kernel is based on capabilities. Java objects can be
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shared indirectly by passing a pointer to a capability object through a “local RMI”

call. The capability is a trusted object that contains a direct pointer to the shared

object. Because of the level of indirection through capabilities to shared objects,

access to shared objects can be revoked. As with shared classes in KaffeOS, a

capability can be passed only if two tasks share the same class through a common

class loader.

All arguments to intertask invocations must either be capabilities or be copied

in depth; i.e., the complete tree of objects that are reachable from the argument

via direct references must be copied recursively. By default, standard Java object

serialization is used, which involves marshaling into and unmarshaling from a linear

byte buffer. To decrease the cost of copying, a fast copy mechanism is also provided.

In contrast, KaffeOS provides its direct sharing model as a means of interprocess

communication. Although not optimized for indirect sharing, KaffeOS does not

preclude the use of object serialization if needed. Unlike the J-Kernel’s microkernel,

indirect sharing in KaffeOS is not a task’s primary means to obtain access to system

services such as filesystem or network access—those are provided by the KaffeOS

kernel.

The J-Kernel’s use of indirect sharing, combined with revocation of capabilities,

allows for full reclamation of a task’s objects when that task terminates. However,

because the J-Kernel is merely a layer on top of a standard JVM, it cannot isolate

the garbage collection activities of different tasks, nor can it account for other

shared functionality.

The J-Kernel supports thread migration between tasks if a thread invokes a

method on an indirectly shared object. The thread logically changes protection

domains during the call; a full context switch is not required. To prevent malicious

callers from damaging a callee’s data structures, each task is allowed to stop a

thread only when the thread is executing code in its own process. This choice of

system structure requires that a caller trust all of its callees, because a malicious

or erroneous callee might never return. In contrast, KaffeOS can always terminate

uncooperative threads safely with respect to the system, but interprocess commu-
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nication will involve at least one context switch.

A companion project to the J-Kernel, the JRes system [22, 25], provides a way

to control and manage computational resources of applications. Like the J-Kernel,

JRes can run on top of a standard JVM. It controls CPU time, memory, and

network bandwidth. CPU time is accounted for by using hooks into the underlying

OS, which is responsible for scheduling them. JRes lowers the priority of threads

that have exceeded their resource limit. Memory is accounted for by rewriting Java

bytecode in a way that adds bookkeeping code to instructions that allocate memory.

JRes adds finalization code to classes so that tasks can be reimbursed for allocated

objects.

Bytecode rewriting is a viable approach where changes to the underlying JVM

cannot be done. However, it suffers from high overhead. In addition, it makes re-

source accounting incomplete, because allocations within internal VM code cannot

be accounted for.

6.1.4 Alta

The Alta [79, 80] system provides an environment that runs multiple applica-

tions in a single JVM that is modeled after the Fluke microkernel [36]. The Fluke

microkernel provides a nested process model, in which a parent process controls all

aspects of its child process. It does so by interposing on the child’s communication,

which is done via IPC. As in many microkernels, system services are provided

through servers, which complicates per-task accounting.

Capabilities provide a way to indirectly share objects between processes, but

there are no write barriers to prevent the leaking of references to objects in one

process to another. It is the parent’s responsibility to restrict a child’s communica-

tion so object references are not leaked. As a result, Alta cannot always guarantee

full reclamation.

Objects can be directly shared between processes if their types, and the closure

of the types of their constituent fields, are structurally identical. This approach

constitutes an extension of Java’s type system. By contrast, KaffeOS guarantees



123

the type safety of its directly shared objects through the use of a common class

loader.

Alta provides the ability to control a process’s memory usage, which is also

done by the process’s parent. Unlike KaffeOS, Alta does not separate the memory

resource hierarchy from the process hierarchy. Because Alta does not provide

separate heaps, it cannot account for garbage collection activity on a per-process

basis.

6.1.5 Secure JVM on Paramecium

Van Doorn describes the implementation of a secure JVM [81] that runs on

top of the Paramecium extensible operating system [82]. Van Doorn argues that

language-based protection is insufficient and prone to bugs; hence, the multiple

protection domains their JVM supports are separated using hardware protection,

which eliminates the need to trust the bytecode verifier.

In the Paramecium JVM, each class or instance belongs to a given domain. The

language protection attributes of a class or instance, such as private or protected,

are mapped to page protection attributes. As a result, an object’s fields may have

to be split over multiple pages (instance splitting).

Classes and objects are shared between domains if they are placed in the same

page. False sharing could occur if a page contained both a shared object and

another, unrelated object that should not be shared. Because such false sharing

would violate the confinement of domains, the garbage collector moves objects or

parts of objects between pages to prevent this situation. Conversely, the garbage

collector attempts to move objects that can be safely shared to pages with the same

set of access permissions.

Because one garbage collector is responsible for all domains, garbage collection

costs are not separately accounted for. In addition, in order to not undermine the

gain in safety added by using hardware protection, the collector must be written in

a way that can handle possible corruption of the objects it examines. This necessity

leads to increased overhead. Finally, denial-of-service attacks against the collector
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are possible. For example, an adversary could manipulate an object’s color in a

way that causes the collector to consume large amounts of CPU.

By allowing direct access to shared pages, the Paramecium JVM avoids marshal-

ing costs during interprocess communication. The Paramecium JVM must also pay

the overhead involved in context switching between different hardware protection

domains. The authors provide no quantitative data as to the efficiency of their

sharing model, which prevents us from comparing it to KaffeOS.

The Paramecium JVM can control a thread’s CPU usage by manipulating its

scheduler priority; cross-domain calls are done via migratory threads. As in the

J-Kernel, safe termination of uncooperative threads is not possible.

6.1.6 Real-Time Java (RTJ)

In 1998, Sun Microsystems started an effort to bring real-time capabilities to the

Java platform. Using its Java Community Process, Sun, IBM, and others developed

a specification for Real-Time Java (RTJ) [14], an implementation of which has been

announced in May 2001. Unlike KaffeOS, RTJ is not concerned with untrusted or

buggy applications but instead focuses on providing bounds on the execution time

of applications. In particular, RTJ provides facilities to manage memory in a way

that allows for real-time execution bounds in the presence of automatically managed

memory. Despite dissimilar goals, RTJ and KaffeOS use similar mechanisms.

Similar to KaffeOS processes that allocate memory from their own heaps, threads

in RTJ can allocate their objects from scoped memory. Such memory areas are not

garbage collected and can be freed once all threads have finished using them. In this

respect, a scope is similar to explicit regions [39], which are a memory management

scheme in which a programmer can allocate objects in different regions but free

regions only as a whole.

As in KaffeOS, write barriers are used to ensure this property at run time, and a

run-time error is triggered when an attempt to establish a reference from an outer,

longer-lived scope into an inner, short-lived scope is being made. Unlike KaffeOS

heaps, scoped memory is not garbage collected and does not allow any cross-scope

references.
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RTJ also provides a mechanism to asynchronously terminate threads. To ad-

dress the problem of corrupted data structures, RTJ allows the programmer to

declare which sections of code are safe from termination requests and in which

sections of code such requests must be deferred. This use of deferred termination

is similar to the KaffeOS user/kernel boundary. Unlike in KaffeOS, entering a

region in which termination is deferred is not a privileged operation. The goal of

terminating threads asynchronously in RTJ is not to be able to kill uncooperative

applications but to provide the programmer with a means to react to outside events.

RTJ’s designers acknowledge that writing code that is safe in the face of asyn-

chronous termination is hard. For this reason, asynchronous events are deferred

by default in legacy code, as well as during synchronized blocks and constructors.

Only code that explicitly enables asynchronous events by using a throws clause can

be asynchronously terminated. KaffeOS’s user/kernel boundary does not provide

termination as a means of programming multithreaded applications, but solely as

a means to terminate threads as a process exits.

We strongly believe that the increased robustness provided by the ability to

deal with buggy—if not untrusted—applications would also benefit those embedded

systems at which RTJ is targeted. KaffeOS’s implementation base could be easily

extended to provide such facilities as scoped memory.

6.1.7 Soft Termination

Rudys et al. [67] propose a scheme for safe termination of “codelets” in language-

based systems. Their work focuses only on termination and does not include other

aspects of a fully developed process model, such as memory control or sharing.

A codelets’s class file is rewritten such that a “check-for-termination” flag is

added to each class. The bytecode is rewritten to check this flag whenever a non-leaf

method is invoked and on every backward branch. System code is not rewritten in

this way. Hence, as in KaffeOS, termination is deferred while a thread is executing

system code. The authors provide a formal semantics for the rewrite rules and

are able to prove that a thread terminates in a bounded amount of time when a

termination request is issued.
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They argue that a user/kernel boundary is too inflexible for a language-based

system because a thread can cross in and out of system code. Although user and

system code can indeed both call each other, it does not follow that calls in both

directions can be treated alike. Like in KaffeOS, every call from system code to

user code must still be treated as an upcall.

Contrary to their claims, the semantics and expressiveness of the soft termi-

nation scheme are mostly identical to KaffeOS’s user/kernel boundary. Their

implementation has the important advantage that it functions on a Java virtual

machine that follows Sun’s specification, but the price they pay is a 3–25% overhead

for checking the flag even if no termination request is pending (the common case).

By comparison, KaffeOS does not need to check when executing in user mode;

checks are only necessary when leaving kernel mode.

6.2 Garbage Collection and Resource Management

Some garbage collection techniques address issues related to KaffeOS, such as

how to reduce the impact of having to perform garbage collection and how to use

memory revocation to implement isolation.

6.2.1 GC Issues

Incremental collection: Incremental collection algorithms can limit the time

spent on garbage collection. An incremental collector allows garbage collection to

proceed concurrently with the execution of the program. Such concurrency can be

achieved by performing a small bit of garbage collection every time the program

performs an allocation. Doing so reduces garbage collection pauses because well-

behaved programs have to stop only at the end of a GC cycle to sweep reclaimable

objects. Baker’s treadmill [3] algorithm goes one step further by using linked lists

to make sweeping immediate.

Incremental collection is a useful concept for real-time systems or other sys-

tems desiring or requiring promptness, but it does not address the issue of proper

accounting. In particular, processes may incrementally collect garbage they did

not cause, which violates the separation between processes. In contrast, we ensure
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that one process spends resources only on collecting its own garbage. Our design

supports incremental collection within one heap.

Moving collectors and fully persistent systems : A moving collector is able to

move objects in memory to compact the used portion of the heap. It has the ability

to recognize and adjust references to the objects being moved. This ability can be

exploited to fight sharing attacks in a different way than KaffeOS does: namely,

by directly revoking references to objects whose owners have gone away. Such

revocation can be done by storing an invalid reference value in a forwarding pointer.

Some objects, however, may be pinned down by an application, for instance, because

they are being accessed by native code. Consequently, this approach would not work

for all objects.

Fully persistent systems go one step further by providing the means to save

and restore all objects to backing storage. A Modula-3 runtime system [30] used

compiler support to maintain precise information on all locations that store pointers

or pointer-derived values. Such complete information would be needed to make

object revocation an effective tool against sharing attacks. This approach may

become more feasible in the future as more complex just-in-time compilers provide

more of the information needed.

Distributed GC : Plainfossé and Shapiro present a review of distributed garbage

collection techniques in [61]. These techniques assume a model in which objects

are located in disjoint spaces separated by protection mechanisms. Objects cannot

be uniformly accessed by their virtual memory address. Spaces communicate with

each other by exchanging messages. When a space exports a public object, an entry

item is created in the owner space, and exit items are created in all client spaces

that use the object. Mechanisms to collect objects across spaces include reference

counting, reference listing, and tracing.

Garbage collection across spaces is complicated by several factors. Simple

reference counting requires that messages arrive in causal order [51], to prevent

the premature reclamation of an object if a decrement message arrives earlier than

an increment message that preceded it. In addition, increment and decrement are
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not idempotent operations, so that lost messages cannot simply be resent. This

problem is avoided by reference listing, which keeps multiple entry items for each

client. KaffeOS does not use message passing to update its reference counts, so no

message-related problems can occur. However, the KaffeOS kernel must be equally

careful to execute operations that change reference counts in the proper order,

because certain operations on references can trigger garbage collections.

Neither reference counting nor reference listing can reclaim cyclic garbage.

Typically, systems relying on these mechanisms assume that cyclic garbage is

infrequent and that any accumulation thereof can be tolerated. Hybrid technologies,

such as object migration [13], address this shortcoming. Objects involved in cycles

are migrated to other spaces until the cycle is locally contained in one space and can

be collected. KaffeOS’s merging of user heaps into the kernel heap can be viewed

as migration of a user heap’s objects to the kernel heap.

6.2.2 Scheduling and Resource Management

CPU scheduling : CPU inheritance scheduling [37] is a scheduling mechanism

that is based on a directed yield primitive. A scheduler thread donates CPU time

to a specific thread by yielding to it, which effectively schedules that thread. The

thread receiving the donation is said to inherit the CPU. Since the thread that

inherits the CPU may in turn function as a scheduler thread, scheduler hierarchies

can be built. Each nonroot thread has an associated scheduler thread that is notified

when that thread is runnable. A scheduler may use a timer to revoke its donation,

which preempts a scheduled thread.

CPU inheritance scheduling is a mechanism, not a scheduling algorithm. Its

strength lies in its ability to accommodate different algorithms that can implement

different policies. We could have used CPU inheritance scheduling for KaffeOS.

However, the universality it provides exacts a substantial increase in implemen-

tation complexity. This added complexity may be justified only for applications

that need the added flexibility inheritance scheduling provides, for instance, to

implement application-specific scheduling policies. Instead, we used a fixed policy,

stride-scheduling, which is a scheduling policy derived from lottery scheduling.
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Lottery scheduling, developed by Waldspurger [84], is a proportional-share sche-

duling algorithm in which each thread is assigned a certain number of lottery tickets.

When a scheduling decision is made, a lottery randomly chooses a thread to be

scheduled. Since a thread’s chances to be picked are proportional to the number of

lottery tickets it holds, threads obtain amounts of CPU time that are proportional

to their ticket allocations.

Stride scheduling improves on lottery scheduling by avoiding its indeterminism.

In stride scheduling, every thread is assigned a fixed stride whose length is indirectly

proportional to the number of tickets the thread holds. In addition, a virtual clock

is kept for each thread. When a thread is scheduled, its virtual clock is advanced

by the number of time quanta multiplied by its stride. The scheduler always picks

the thread with the lowest virtual time, which creates a regular scheduling pattern.

Managing multiple resources : Sullivan and Seltzer developed a resource man-

agement framework that takes multiple resources into account [74]: CPU time,

memory, and disk bandwidth. Like KaffeOS, this framework uses proportional-

share algorithms to schedule these resources but goes further in that it allows

resource principals to exchange tickets. For instance, a CPU-bound application with

little memory consumption can exchange tickets with an application that needs less

CPU time but has a larger working set to keep in memory. Sullivan demonstrated

that such ticket exchanges can improve overall application performance. KaffeOS

could also benefit from the flexibility provided by such exchanges. For instance,

applications with high allocation rates could trade CPU time for more memory,

which could reduce the frequency of garbage collection. Applications that produce

little or no garbage could benefit by trading some of their memory allocations for

CPU shares.

Resource containers : Resource containers [5] decouple resource consumption

and protection domains in a hardware-based operating system. Traditionally, such

systems merged both abstractions into their process abstraction. However, if a

programmer uses two processes to implement an activity that is executed on behalf

of the same resource principal, then these systems are unable to accurately account
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for the resources that are consumed. Resource containers are a means to account

for the consumption of resources across traditional process boundaries. They are

bound to threads, but they can switch the thread to which they are bound. Resource

containers serve a second function in that they simultaneously denote a resource

capability. They can be passed between processes, and they can be arranged in a

hierarchy to enable hierarchical resource management.

KaffeOS’s resource objects provide a similar decoupling of resource consumption

and processes as resource containers. The resource object hierarchy can be used

to ensure that multiple processes are subject to a common memory limit or CPU

share. However, resource objects cannot be passed between processes and threads

the way resource containers can. This limitation is partly because memory handed

out to a process is not revocable in KaffeOS, unless the whole process is termi-

nated. Sullivan [74] reports that even in systems that support paging, scheduling

of physical memory in a way similar to CPU time is problematic, because it can

lead to inefficient memory use and is prone to cause thrashing.

6.3 Operating Systems

Language-based operating systems have existed for many years. Most of them

were not designed to protect against malicious applications, although a number

of them support strong security features. None of them, however, provide strong

resource controls. More recent systems use language-based mechanisms for kernel

extensions; in these systems, the kernel becomes an instance of the type of runtime

environment for which KaffeOS was designed.

6.3.1 Early Single-Language Systems

Pilot : The Pilot Operating System [64] and the Cedar [76] Programming En-

vironment were two of the earliest language-based systems. Their development at

Xerox PARC in the 1980s predates a later flurry of research in the 1990s on such

systems.

The Pilot OS and all of its applications were written in Mesa. Mesa’s type-

checking system guaranteed protection without needing MMU support. However,
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Pilot’s protection mechanisms were targeted at a single-user system, where pro-

gramming mistakes are a more serious problem than maliciousness or attacks. Pilot

did not provide resource management for its applications: resource shortages had

to be either managed by the user, or more resources had to be added.

Oberon/Juice: Juice [38] provides an execution environment for downloaded

Oberon code (just as a JVM provides an execution environment for Java). Ober-

on [89] has many of Java’s features, such as garbage collection, object-orientation,

strong type-checking, and dynamic binding. Unlike Java, Oberon is a nonpreemp-

tive, single-threaded system. Its resource management policies are oriented towards

a single-user workstation with interactive and background tasks. Background tasks

such as the garbage collector are implemented as calls to procedures, where “in-

terruption” can occur only between top-level procedure calls. Juice is a virtual

machine that executes mobile code in its own portable format: it compiles them to

native code during loading and executes the native code directly. The advantage

of Juice is that its portable format is faster to decode and easier to compile than

Java’s bytecode format.

6.3.2 Single-Address-Space Systems

Some operating systems [18, 44, 66, 86] decouple the notions of virtual address

space and protection domain. Instead, they exploit a single address space for all

processes. Placing different processes in different protection domains allows the

system to control which pages are accessible to a given process. This control is

enforced using traditional hardware protection. This design allows virtual addresses

to be used as unique descriptors for pages shared among processes. Such sharing is

possible by allowing access to shared pages from multiple protection domains.

Since access to shared memory in Single-Address-Space (SAS) systems can be

revoked, SAS systems do not suffer from Java’s problem that handing out references

to a shared object prevents its reclamation. They are therefore not susceptible

to sharing attacks. However, because a type-safe language is not used, memory

protection must be used when untrusted threads access a shared segment, which is

not required when different KaffeOS processes access shared kernel objects.
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Systems such as Angel [86], Mungi [44], or Opal [18] implement access to sec-

ondary storage by allowing shared objects to be made persistent. As a consequence,

such systems have to manage the secondary storage resources used. This problem

is very similar to the problem of managing shared objects in KaffeOS. Angel used a

form of garbage collection to reclaim the address space and backing storage for

objects, but it ignored the problem of charging for objects whose owners had

died. Mungi introduced an economy-based model of period rent collection and

bank accounts that would forcefully evict those objects for which no rent was paid.

KaffeOS’s shared heaps are not persistent: they can be collected after all sharers

terminate.

6.3.3 Inferno

Inferno [31] is an operating system for building distributed services. Inferno

applications are written in Limbo, which is a type-safe language that runs on a

virtual machine called Dis. Inferno supports different tasks that can execute user

code contained in modules. Different tasks communicate through channels that are

supported by the Inferno kernel, which provide a facility for exchanging typed data.

Inferno’s security model protects the security of communication and provides

control over logical resources accessible to a task. As in PLAN 9 [60], all resources

in Inferno are named and accessed as files in multiple hierarchical file systems.

These file systems are mapped into a hierarchical namespace that is private to

each task. A communication protocol called Styx is used to access these resources

in a uniform fashion. By restricting which resources appear in a task’s private

namespace, Inferno can implement access restrictions to logical resources.

Inferno uses reference counting to reclaim most of its objects immediately once

they become unreachable. Reference counting is used to minimize garbage collection

pauses and because it reduces an application’s memory footprint. An algorithm

known as Very Concurrent Garbage Collection, or VCGC [45], is used to collect

the cyclic garbage reference counting cannot reclaim. Unlike KaffeOS, Inferno does

monitor the references a task acquires and may consequently be subject to sharing

attacks. It does not implement memory controls. Inferno does not distinguish
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between user and kernel mode; instead, user and system data objects are treated

equally by the collector. This lack of a clear distinction between user and system

objects caused problems: aside from making it impossible to forcefully terminate

applications in all circumstances, it led to a system that was harder to debug [59].

6.3.4 Extensible Operating Systems

SPIN : SPIN [10] is an operating system kernel into which applications can down-

load application-specific extensions. These extensions provide application-specific

services; for instance, an in-kernel video server can take video packets directly from

the network interface. Downloading extensions speeds up applications because they

are able to directly access the kernel’s interfaces without having to cross the red

line to enter the kernel.

The SPIN kernel and its extensions are written in Modula-3, a type-safe lan-

guage similar to Java. Like Java in KaffeOS, Modula-3’s type safety provides mem-

ory safety for kernel extensions in SPIN. SPIN also supports dynamic interposition

on names, so that extensions can have different name spaces.

To prevent denial-of-service attacks, certain procedures in an extension can be

declared ephemeral, which implies that they cannot call procedures not declared as

such. This declaration allows these procedures to be killed if they execute for too

long but also restricts what they can do. In particular, an ephemeral procedure

cannot call a procedure that is not itself declared ephemeral, which is why ephemeral

procedures provide only a partial solution to the problem of termination.

SPIN does not control the amount of heap memory or other resources used

by its extensions, and it cannot always safely unlink and unload an extension.

KaffeOS’s mechanisms could be applied to provide this functionality by defining a

kernel within the SPIN kernel.

VINO : VINO [69] is an extensible operating system that allows for kernel

extensions, which are called grafts, to be inserted in the kernel. Instead of employing

a type safe language, VINO’s grafts are written in C++ and are rewritten using

MiSFIT [71], a static software-fault isolation tool, before being inserted into the

kernel.
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Grafts are subject to resource limits and can be safely aborted when they

exceed them. Instead of using language-based mechanisms, VINO wraps grafts

in transactions. For instance, all accesses to system state must be done through

accessor methods that record state changes on an undo call stack. If the graft

is aborted, these changes are undone. Transactions are a very effective but also

very heavyweight mechanism. In addition, the authors report that SFI overhead

associated with data-intensive grafts can be “irritating” [69].



CHAPTER 7

CONCLUSION

Before we summarize KaffeOS’s contributions and conclude, we discuss some of

the directions in which our work could be continued.

7.1 Future Work

Implementing KaffeOS’s design in a higher-performing JVM would allow us to

more accurately gauge its costs and benefits. Specifically, we would expect a more

accurate picture of the write barrier overhead, as well as possible gains in scalability

and performance for misbehaving applications.

More efficient text sharing : KaffeOS’s efficiency could be improved by forgoing

the use of class loaders for the reloading of system classes. Our implementation

uses class loaders to provide each process with its own set of static variables for

roughly one third of the runtime classes. It should be possible to build a mechanism

into the JVM that would allow multiple logical instances of a class to be created,

without duplicating that class’s text or internal class representation. Each logical

instance would have to have its own private store for all static variables. The text

emitted by the just-in-time compiler would have to use indirection when compiling

accesses to these variables, in the same way that a C compiler generates accesses to

the data segment in position-independent code (PIC) for shared libraries in some

versions of Unix.

More efficient write barrier implementation: Instead of outlining write barriers

into separate functions, which requires the generation of a function call before the

actual write, we could use inlined write barriers. Such inlining would be enabled by

the use of a more sophisticated just-in-time compiler. The write barrier code could

be expressed as statements in the intermediate representation language used by such
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a compiler, before additional optimization steps are applied. These optimization

passes would then automatically take the write barrier and its surrounding code in

its entirety into account. The compiler could apply heuristics and other techniques

to determine when it is more beneficial to outline the write barrier code, because

inlining increases code size and therefore might not always increase performance.

Per-heap garbage collection strategies : Knowledge about the likely lifetime dis-

tributions of objects on different heaps could help improve the garbage collection

mechanism used by a JVM based on KaffeOS’s design. In particular, objects on the

kernel heap are likely to have a different lifetime distribution than objects on user

heaps. For instance, shared classes on the kernel heap and their associated static

member data are likely to be long-lived. Such data include timezone descriptions

and character set conversion tables, which are mostly read-only data that are easily

shared by all processes. Consequently, a generational collector could immediately

tenure such objects into an older generation.

Cooperative thread stack scanning and multiprocessor support : Our current

prototype scans each thread stack in the system for each collector, which does

not scale. In addition, our GC algorithm assumes a uniprocessor architecture, in

which no other than the current thread runs during a given time quantum. The first

problem could be solved by investigating ways for different collectors to cooperate

when scanning thread stacks, while keeping the memory overhead associated with

storing intermediate GC results small. The second problem, which is related, could

be solved by applying multiprocessor garbage collection techniques.

7.1.1 Applying static checking.

One of KaffeOS’s design properties is that state that is shared among different

processes in the system must only be modified in kernel mode. However, we have

no means of verifying that property in the general case. We can—and have—added

checks to critical points in our code where we know we must execute in kernel

mode, such as when allocating explicitly managed memory from the kernel heap.

Unfortunately, this approach cannot be generalized, because it is not always clear

whether a given piece of code must be run in kernel mode or not. For instance,
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whether access to a static variable must be in kernel mode depends on whether a

class is shared or reloaded. Similarly, the safety of acquiring a lock on a shared class

in user mode depends on whether that lock is also used by kernel code elsewhere.

We believe that most of these properties could be checked statically by a tool,

which we describe briefly. First, this tool would have to determine which classes

could be safely shared and which must be reloaded. If there are linker constraints

that influence this decision—as is the case in our implementation described in

Section 4.2—then the tool needs to take those into account.

Second, once the classes are classified as shared or reloaded, the tools would

need to classify all statements as to whether they must be run in kernel mode or

not. If a statement must be run in kernel mode, we need to ensure that there is no

user-mode execution path leading to it. We expect to be able to detect violations

of the following properties:

• System code acquires shared locks only in kernel mode.

• Kernel code does not contend for locks that are visible to user code.

• Kernel mode is always exited before returning from a system call.

• Kernel code does not hold shared locks when performing an upcall to user-

mode code.

• Native methods that allocate resources from an underlying operating system

run in kernel mode.

In addition, knowledge about on which heap a thread executes could be included.

This knowledge could be used to detect situations in which kernel code might

accidentally return references to foreign heaps to user code, or other situations that

could subsequently trigger a write barrier violation or lead to memory leaks.

Meta-level compilation (MC) [33] is a recently developed technique that allows

for the detection of violations of system-specific properties such as those described.

MC provides a language in which a user can write system-specific compiler exten-

sions, which are invoked when the compiler encounters certain syntactic patterns.
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These extensions can include knowledge about the semantics of the program that

are not normally accessible to a compiler, such as whether a class is shared or

reloaded or that Kernel.enter() enters kernel mode.

7.2 JanosVM Application

An ongoing project, JanosVM [78], already uses KaffeOS as its design and

implementation base. JanosVM is a virtual machine targeted at supporting mobile

Java code in active networks. JanosVM code is run in teams, which correspond to

KaffeOS processes. Unlike KaffeOS, JanosVM is not intended as an environment

in which to run applications directly. Instead, it is intended as a foundation on

which to build execution environments for active code. Consequently, JanosVM

both restricts KaffeOS’s flexibility by specialization and extends its flexibility by

providing trusted access to some internal kernel functionality.

JanosVM supports direct cross-heap references but does not use entry and exit

items the way KaffeOS does. Instead, all cross-heap references are represented

by proxies, which are referred to as importables and exportables. Importables and

exportables are like entry and exit items, except that they are explicitly managed.

The responsibility of managing falls on the designer who uses JanosVM to build

an execution environment. The designer must guarantee that importables and

exportables are used in a way that does not create illegal cross-heap references.

Guaranteeing this requirement is hard and requires that the kernel be free of bugs.

An advantage of explicitly managed cross-heap references is that heaps can be

reclaimed immediately after a team terminates, as is the case in the J-Kernel [42].

This property may prove beneficial if the frequency with which teams are created

and terminated is high.

KaffeOS’s kernel boundary is static, but it also exports primitives for entering

and leaving kernel mode to trusted parties. JanosVM makes use of this facility in

a systematic way for interprocess communication between trusted parties. Threads

can visit other teams, execute the code of those teams, and return to their home

teams. A thread runs in kernel mode while visiting another team. System calls
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can be viewed as visits to the kernel team. Consequently, a piece of code could run

either in kernel mode or in user mode at different times and for different threads.

It would run in kernel mode for a visiting team if it is used by a service that is

deemed critical to the whole system; it would run in user mode if invoked as part

of some other activity by the home team. This extension protects trusted servers

without making them statically part of the kernel.

Because JanosVM is not intended to support general-purpose applications,

shared heaps are not supported. Instead, JanosVM supports customized sharing

for its application domain. For instance, teams can share packet buffers, which are

objects with a well-known set of access primitives that are treated specially by the

system. Consequently, some implementation complexity was removed, because the

kernel garbage collector does not need to check for orphaned shared heaps.

JanosVM improves on KaffeOS’s resource framework by including other re-

sources in a uniform way. For instance, the namespace of a process is treated as a

resource that can be managed just like the memory and CPU time used by a process.

In KaffeOS, such policies would require a new process loader implementation.

7.3 Summary

In this dissertation, we have presented the design and an implementation of

a Java runtime system that supports multiple, untrusted applications in a robust

and efficient manner. The motivation for this work arose from the increasing use of

type-safe languages, such as Java, in systems that execute untrusted code on behalf

of different users. Although these systems already provide security frameworks that

protect access to logical resources such as files, they do not support proper isolation

between applications, safe termination of uncooperative or buggy applications, or

the management and control of primary computational resources: memory and

CPU time.

When these problems became apparent, researchers were divided: one camp

considered the memory protection enabled by type safety, combined with the ex-

isting security model, to be sufficient to guarantee the safe execution of mobile
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code, and believed that protection against resource-based denial-of-service attacks

could be provided as an afterthought. The other camp did not believe that any

new problems had arisen, because any and all of these problems could be attacked

with existing operating system mechanisms by encapsulating the Java runtime as

a whole into an operating system process.

Our approach uses arguments from both camps: instead of running applications

in multiple operating system processes, we have used operating system ideas to

introduce a process concept into the Java virtual machine. KaffeOS’s processes

provide the same properties as operating system processes: they protect and isolate

applications from each other, and they manage and control the resources that

they use. One motivation for using a single JVM for multiple applications is

scalability, which results from efficient sharing of data between applications; another

motivation is the potential to run on low-end hardware.

We have demonstrated that the red line abstraction, which separates kernel

from user code, is necessary to protect critical parts of the system from corruption

when applications are killed. Code that executes in kernel mode delays termination

requests until it returns to user mode; in addition, it is written such that it can

safely back out of exceptional situations. The red line, however, does not erect

“thick walls” around applications: it does not prevent sharing, because it does not

change the way in which objects access each other’s fields and methods; type safety

remains the means to enforce memory safety.

KaffeOS manages memory and CPU time consumed by its processes. For

memory, each process has its own heap on which to allocate its objects and other

data structures. A process’s memory usage can be controlled by limiting its heap

size. Separating CPU time requires that the time spent in garbage collection by

each process can be accurately accounted for. For this reason, KaffeOS’s heaps can

be independently garbage collected, even in the presence of cross-heap references.

KaffeOS separates the resources used by different processes, but its resource

management framework supports policies more flexible than simple partitioning.

Soft memory limits allow multiple processes to share a common memory limit, so
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that one process can use surplus memory that is not being used by other processes.

Similarly, KaffeOS’s use of a work-conserving proportional-share scheduler allows

other processes to use a process’s CPU time when that process is not ready to run.

To ensure full reclamation of a process’s memory, KaffeOS prevents writes that

could create references that could keep a process’s objects alive after the process

terminates. For that purpose, KaffeOS uses write barriers, which are a garbage

collection technique. This use of write barriers prevents sharing attacks, in which a

process could prevent objects from being reclaimed by collaborating with or duping

another process into holding onto references to these objects.

KaffeOS adopts distributed garbage collection techniques to allow for the inde-

pendent collection of each process’s heap, even in the face of legal cross-references

between the kernel heap and user heaps. The key idea is to keep track of the

references that point into and out of each user heap. Incoming references are kept

track of in entry items, which are treated as garbage collection roots. Outgoing

references are kept track of in exit items, which allow for the reclamation of foreign

entry items when their reference counts reach zero. These ideas were originally

developed for situations in which objects cannot access other objects directly.

KaffeOS does not prevent direct access but does use entry and exit items for resource

control.

In addition to kernel-level sharing for increased efficiency, KaffeOS also supports

user-level sharing by way of shared heaps. Shared heaps allow processes to share

objects directly, which allows for efficient interprocess communication in KaffeOS.

However, not to compromise full reclamation and accurate accounting, we had to

restrict the programming model for user-level shared objects somewhat: a shared

heap’s size is frozen after creation, and write barriers prevent the creation references

to objects in user heaps. We have shown that despite these restrictions, applications

can conveniently share complex data types, such as hashmaps and linked lists.

This dissertation discusses both the design of KaffeOS (in Chapter 3) and an

implementation of this design (in Chapter 4). In our implementation, we modified

an existing single-processor, user-mode Java virtual machine to support KaffeOS’s
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functionality. Some implementation decisions, such as the use of class loaders for

multiple namespaces or the specifics of how our garbage collector represents its per-

heap data structures, were influenced by the infrastructure with which we worked.

However, KaffeOS’s design principles apply to other JVMs as well, which is why

we discussed them without assuming a concrete underlying JVM.

The core ideas of KaffeOS’s design are the use of a red line for safe termination,

the logical separation of memory in heaps, the use of write barriers for resource

control, the use of entry and exit items for separate garbage collection, and re-

stricted direct sharing to support interprocess communication. We emphasize that

these ideas do not have to be applied in their totality but are useful individually

as well. For instance, a red line can provide safe termination even in JVMs that

use a single heap, and write barriers can provide scoped memory as in Realtime

Java even when those areas are not subject entry and exit items are not used for

separate garbage collection.

Finally, although KaffeOS was designed for a Java runtime system, its tech-

niques should also be applicable to other languages that exploit type safety to run

multiple, untrusted applications in a single runtime system. Such environments

could also profit from KaffeOS’s demonstrated ability to manage primary resources

efficiently and the defenses against denial-of-service attacks it provides.
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ON SAFE TERMINATION

When a thread is terminated asynchronously—either because its process has

exceeded a resource limit or because an external request to terminate its process

has been issued—critical data structures must be left in a consistent state. There

are two basic approaches to achieve this consistency: either a cleanup handler

is invoked that detects and repairs inconsistencies (roll back) or termination is

deferred during the manipulation of the data structures (roll forward). In Java,

cleanup handlers would be provided as catch clauses.

An example demonstrates why using deferred termination should be preferred to

exception handling facilities for guaranteeing consistency. Consider the simplified

code fragment in Figure A.1; this code might be encountered in an application-

specific packet gateway. A packet dispatcher thread sits in a loop, reads packets

from an input queue, and dispatches them to an output queue. The critical invariant

in this case shall be that every packet that is dequeued will be enqueued in the

output queue, i.e., that no packets are lost if the dispatching thread is terminated.

class Packet;
class Queue {

synchronized void enqueue(Packet p);
synchronized Packet dequeue() throws QueueClosedException;

} inputQueue, outputQueue;

while (!finished) {
outputQueue.enqueue(inputQueue.dequeue());

}

Figure A.1. Packet dispatcher example. A thread dispatches packets from an
input queue onto an output queue. This example is properly synchronized and
correct in the absence of asynchronous termination.
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Figure A.2 shows a naive attempt to write this example using exception handling

facilities. The calls to outputQueue.enqueue() and inputQueue.dequeue() are

enclosed in a try block. If the thread is terminated while executing that try

block, a TerminationException is thrown that is caught by the provided catch

clause, which contains the cleanup handler. If we make the simplifying assumption

that enqueue and dequeue do not need cleanup, the cleanup handler only has to

determine whether a dequeued packet is pending, and enqueue the packet if so.

Unfortunately, this approach could yield incorrect results. According to the Java

language specification [49], the evaluation of the expression inputQueue.dequeue()

may complete abruptly, and leave the variable p unassigned, even though a packet

was dequeued. Similarly, p, which is reset to null at the beginning of every

iteration, could still refer to a packet that has already been enqueued and should

not be enqueued again.

Changing the code such that the assignment to p is visible if and only if a packet

was dequeued could be possible by making p a public field of Queue that is set

atomically by the enqueue and dequeue methods. Even then, the non-null check in

the cleanup handler does not work because of Java’s flawed memory model [62]. If

current proposals to fix the memory model are adopted, additional synchronization,

while (!finished) {
Packet p = null;
try {

outputQueue.enqueue(p = inputQueue.dequeue());
} catch (TerminationException _) {

if (p != null) {
outputQueue.enqueue(p);

}
}

}

Figure A.2. Naive approach to guaranteeing queue consistency using cleanup
handlers. If a termination request is signaled via a TerminationException, the
catch clause attempts to dispatch packets that have been dequeued, but not
enqueued, so that no packets are lost. This naive approach does not work because
it does not reliably detect when a dequeued packet must be enqueued.
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combined with annotations such as volatile, might be required to ensure that the

value of p that reflects the correct state of the input and output queues is visible

to the cleanup handler.

If we reconsider the earlier assumption that enqueue and dequeue do not

require cleanup, we recognize that the programmer of these methods is likely to

face similar problems as the programmer of the packet dispatcher routine. In

particular, if the delivery of a TerminationException interrupted the execution of

outputQueue.enqueue(), the queue must not be left in an inconsistent state that

would prevent the subsequent invocation of the enqueue method in the cleanup

handler. Guaranteeing this property involves similar considerations and the addi-

tion of cleanup handlers inside enqueue and dequeue. Consequently, as the amount

of state manipulated by a thread grows, so does the complexity of the code needed

to repair that state if an asynchronous exception can terminate a thread.

Figure A.3 shows how this example would be rewritten using deferred termina-

tion. Termination requests are deferred when the kernel is entered. The dispatcher

thread is informed of a pending termination request through a flag that it polls.

If the flag is set, the dispatcher thread can terminate when the queues are in a

consistent state. This version does not suffer from the potential for errors that the

exception-based version does, which is why we chose that approach in KaffeOS.

Kernel.enter();
try {

while (!finished && !Kernel.terminationPending) {
outputQueue.enqueue(inputQueue.dequeue());

}
} finally {

Kernel.leave();
}

Figure A.3. Packet dispatch using deferred termination. Because termina-
tion requests are not acted upon while code is executing in a Kernel.enter()/
Kernel.leave() section, the invariant that all dequeued packets from the input
queue are enqueued in the output queue is guaranteed. The finally clause ensures
that kernel mode is left even if a QueueClosedException is thrown.
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SERVLET MICROENGINE

This appendix provides an in-depth discussion of the servlet microengine exam-

ple presented in Section 5.4.3. The example consists of four source code files, Http-

ServerQueue.java, DictionaryServer.java, GermanEnglishDictionary.java,

and DictionaryServlet.java, each of which is discussed in a separate section.

B.1 HttpServerQueue.java

The shared.HttpServerQueue class provides a queue for http requests that is

shared between server and servlet processes. Each request is stored as an object

of type HttpServerQueue.Request (lines 11–30). A client request is read into a

fixed-size buffer of 2048 bytes, which is preallocated in the constructor (lines 23–29).

The constructor also preallocates entry items to enable the subsequent storage of

references to the buffer in user-heap objects.

The request object includes an object of type kaffeos.sys.FD, which contains

a file descriptor for the connection to the client. The Request.setConnection()

(lines 18–20) and the Request.getConnection() methods (line 17) are used to

store the file descriptor into the request object and retrieve it from there. FD.-

dupInto is a kernel interface that we added to transfer file descriptors between

processes.

The HttpServerQueue() constructor (line 39–47) allocates n queues for requests

that are dispatched to servlets and one queue for “empty” requests that are not cur-

rently in use. It uses the shared.util.LinkedList class discussed in Section 5.4.3

for that purpose. The methods getEmptyRequest() (lines 53–61), putRequest()

(lines 67–72), getNextRequest() (lines 78–86), and putEmptyRequest() (lines

92–97) are wrappers that provide mutual exclusion and unilateral synchronization
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for the underlying request queues. These methods are invoked in the following

order:

1. The server calls getEmptyRequest() to dequeue an empty request. It then

accepts a new client and reads the first bytes into the request buffer, which

contain the client’s request.

2. The server identifies the request and calls putRequest() to dispatch the

request to a waiting servlet, which is woken up after being notified of the

new request.

3. The dispatched servlet calls getNextRequest() to obtain the next request

from the queue and processes the request.

4. The servlet recycles the request by calling putEmptyRequest().

1 package shared;
2 import shared.util.LinkedList;
3 import kaffeos.sys.FD;
4

5 /**
6 * HttpServerQueue allows http servers to share
7 * request queues with servlets
8 */
9 public class HttpServerQueue {

10

11 public static class Request {
12 private byte []buf; // first 2048 of data read from client
13 private FD fd; // preallocated file descriptor
14

15 public int getCapacity() { return (buf.length); }
16 public byte[] getBuffer() { return (buf); }
17 public FD getConnection() { return (fd); }
18 public void setConnection(FD fd) {
19 this.fd.dupInto(fd);
20 }
21

22 /* constructor preallocates objects while shared heap is populated */
23 Request() {
24 this.buf = new byte[2048];
25 this.fd = new FD();
26 kaffeos.sys.Heap h = kaffeos.sys.Heap.getCurrentHeap();
27 h.reserveEntryItem(buf);
28 h.reserveEntryItem(fd);
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29 }
30 }
31

32 public final int NMAX = 20; // max number of entries per queue
33 public final int NQUEUES = 2; // number of queues
34 private shared.util.LinkedList freeQueue, requestQueues[];
35

36 /**
37 * preallocate sufficient number of requests for queues
38 */
39 HttpServerQueue() {
40 requestQueues = new LinkedList[NQUEUES];
41 for (int i = 0; i < NQUEUES; i++)
42 requestQueues[i] = new LinkedList(NMAX);
43

44 freeQueue = new LinkedList(NMAX * NQUEUES);
45 for (int i = 0; i < NMAX * NQUEUES; i++)
46 freeQueue.add(new Request());
47 }
48

49 /**
50 * get empty Request object to use for server
51 * (called by server)
52 */
53 public Request getEmptyRequest() throws InterruptedException {
54 Request thisreq;
55 synchronized (freeQueue) {
56 while (freeQueue.isEmpty())
57 freeQueue.wait();
58 thisreq = (Request)freeQueue.removeFirst();
59 }
60 return (thisreq);
61 }
62

63 /**
64 * put Request object in queue for servlet
65 * (called by server)
66 */
67 public void putRequest(Request thisreq, int nr) {
68 synchronized(requestQueues[nr]) {
69 requestQueues[nr].addLast(thisreq);
70 requestQueues[nr].notify();
71 }
72 }
73

74 /**
75 * get next Request object from queue
76 * (called by servlet)
77 */
78 public Request getNextRequest(int nr) throws InterruptedException {
79 Request req;
80 synchronized (requestQueues[nr]) {
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81 while (requestQueues[nr].isEmpty())
82 requestQueues[nr].wait();
83 req = (Request)requestQueues[nr].removeFirst();
84 }
85 return (req);
86 }
87

88 /**
89 * put now empty Request object back into free queue
90 * (called by servlet)
91 */
92 public void putEmptyRequest(Request req) {
93 synchronized (freeQueue) {
94 freeQueue.add(req);
95 freeQueue.notify();
96 }
97 }
98 }

B.2 DictionaryServer.java

The shared.DictionaryServer class implements the server process in our

microengine example. Its main() method marks the point at which execution

starts. It first creates a shared request queue on a new shared heap (line 17).

After registering the shared.HttpServerQueue class, the class is mapped into the

server process’s namespace. The server can then directly refer to the shared queue

instance after casting it into an instance of type HttpServerQueue (line 22), which

demonstrates the seamlessness with which a KaffeOS process can access shared

objects.

The server process starts the servlet processes (lines 23–43). The servlet pro-

cesses use the same classes and provide the same functionality; a number passed

as a command line argument to each servlet is used for identification (lines 35–36).

The server creates a socket to listen on port 8080 (line 45) and loops while handling

requests (lines 47–96). The server obtains an empty request object (line 51) and

reads the data received from the client into it (lines 68–74). An anonymous

inner class derived from java.io.BufferedInputStream (lines 54–62) provides a

buffered input stream based on a user-provided buffer. Because objects allocated

on a shared heap can be used seamlessly within a KaffeOS process, we are able to

direct the buffered input stream to directly use the shared byte[] array stored in



150

the HttpServerQueue.Request.buf field (line 62).

The request is parsed (lines 75–77) and passed onto the servlet (lines 83–87).

The java.net.Socket.getFD() method, which we added to the java.net.Socket

class, returns a reference to a socket’s underlying kaffeos.sys.FD object, which

represents a file descriptor in the KaffeOS kernel. This file descriptor is dupli-

cated via HttpServerQueue.Request.setConnection(), which is discussed in Sec-

tion B.1, before the request is dispatched to the servlet (line 80).

1 import kaffeos.sys.*;
2 import kaffeos.resource.*;
3 import kaffeos.sys.Process;
4 import shared.HttpServerQueue;
5 import shared.HttpServerQueue.Request;
6 import java.lang.reflect.*;
7 import java.io.*;
8 import java.util.*;
9 import java.net.*;

10

11 /**
12 * micro http server for dictionary servlets
13 */
14 public class DictionaryServer {
15

16 public static void main(String []av) throws Throwable {
17 Shared sh = Shared.registerClass("shared.HttpServerQueue", 1);
18 serveRequests(sh);
19 }
20

21 public static void serveRequests(Shared sh) throws Throwable {
22 HttpServerQueue ds = (HttpServerQueue)sh.getObject(0);
23 ProcessHandle h1, h2;
24 Hashtable r1, r2;
25 MemResource mr = Process.getHeap().getMemResource();
26 CpuResource mc = Process.getCpuResource();
27

28 r1 = new Hashtable();
29 r2 = new Hashtable();
30 r1.put(MemResource.MEMRES, mr.createSoftReserve(mr.getLimit()));
31 r2.put(MemResource.MEMRES, mr.createSoftReserve(mr.getLimit()));
32 r1.put(CpuResource.CPURES, mc.createChildReserve("Servlet #0", 0.2f));
33 r2.put(CpuResource.CPURES, mc.createChildReserve("Servlet #1", 0.5f));
34

35 Object [] firstchild = new Object[] { new String[] { "0" } };
36 Object [] secondchild = new Object[] { new String[] { "1" } };
37 Properties prop = System.getProperties();
38 h1 = Process.newProcess("DictionaryServlet", firstchild, prop, r1);
39 h2 = Process.newProcess("DictionaryServlet", secondchild, prop, r2);
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40

41 h1.start();
42 Thread.sleep(3000);
43 h2.start();
44

45 ServerSocket s = new ServerSocket(8080);
46 try {
47 while (true) {
48 Socket conn = s.accept();
49 try {
50 // get a new fresh request buffer
51 Request thisreq = ds.getEmptyRequest();
52

53 // create buffered input stream on top of request buffer
54 BufferedInputStream ps =
55 new BufferedInputStream(conn.getInputStream(),
56 thisreq.getCapacity())
57 {
58 BufferedInputStream setBuf(byte []buf) {
59 this.buf = buf;
60 return (this);
61 }
62 }.setBuf(thisreq.getBuffer());
63

64 // make sure buf is not skipped
65 ps.mark(thisreq.getCapacity());
66

67 // read request
68 InputStreamReader in = new InputStreamReader(ps);
69 StringBuffer sb = new StringBuffer(80);
70 for (;;) {
71 int r = in.read();
72 if (r == ’\r’ || r == ’\n’ || r == -1) break;
73 sb.append((char)r);
74 }
75 StringTokenizer st = new StringTokenizer(sb.toString());
76 String method = st.nextToken();
77 String request = st.nextToken();
78

79 if (method.equalsIgnoreCase("GET")) {
80 thisreq.setConnection(conn.getFD());
81

82 // dispatch to servlet based on "s=" argument
83 if (request.indexOf("s=0&") > -1) {
84 ds.putRequest(thisreq, 0);
85 } else {
86 ds.putRequest(thisreq, 1);
87 }
88 }
89 } catch (Exception e) {
90 e.printStackTrace(System.err);
91 } finally {
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92 if (conn != null) {
93 conn.close();
94 }
95 }
96 }
97 } catch (Exception e) {
98 e.printStackTrace(System.err);
99 }

100 }
101 }

B.3 GermanEnglishDictionary.java

The shared.GermanEnglishDictionary class implements a simple hashmap-

based dictionary. The class provides a wrapper around an object of type shared.-

util.HashMap, which is discussed in Section 5.4.2. The constructor, which is

executed while the shared heap is populated, reads pairs of words from a file and

adds entries to the hashmap. The lookup() method (lines 38–40) and the size()

method (lines 45–47) provide wrappers to access the get() and size() methods

of the underlying hashmap. The use of a default constructor (lines 31–33) in this

example is not only because it is convenient, but also because our current KaffeOS

implementation does not support the passing of arguments from a user heap to

constructors of objects allocated on a shared heap. Argument passing could be

implemented in the same way certain arguments to system calls are deep copied,

which is described in Section 4.1.

1 package shared;
2

3 import java.io.*;
4 import shared.util.*;
5 import java.util.Iterator;
6 import java.util.NoSuchElementException;
7 import java.util.StringTokenizer;
8 import java.util.Map;
9

10 /**
11 * Shared class that provides a German/English dictionary
12 */
13 public class GermanEnglishDictionary {
14 private shared.util.HashMap hmap;
15

16 /**
17 * Construct dictionary from input file
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18 * This constructor is executed while the shared heap is created.
19 */
20 GermanEnglishDictionary(Reader r) throws IOException {
21 LineNumberReader ln = new LineNumberReader(r);
22 String l = null;
23 hmap = new HashMap();
24 while ((l = ln.readLine()) != null) {
25 if (l.startsWith("#")) continue;
26 StringTokenizer s = new StringTokenizer(l, "\t");
27 hmap.put(s.nextToken(), s.nextToken());
28 }
29 }
30

31 GermanEnglishDictionary() throws IOException {
32 this(new FileReader("German.txt"));
33 }
34

35 /**
36 * provide lookup operation based on shared hashmap
37 */
38 public String lookup(String s) {
39 return ((String)hmap.get(s));
40 }
41

42 /**
43 * report number of entries
44 */
45 public int size() {
46 return (hmap.size());
47 }
48 }

B.4 DictionaryServlet.java

The shared.DictionaryServlet class implements the servlet process in our

microengine example. The DictionaryServer server class starts two instances of

this class. Both instances look up the shared http server queue created by the server

(line 18). They also share an instance of type shared.GermanEnglishDictionary

(line 19), which is discussed in Section B.3. The serve() method contains the servlet

loop (lines 31–82). A servlet waits for the next request on the queue to which it

was assigned (line 33). Because server and servlet share only the bare byte buffer

in our example, the servlet needs to repeat some of the work done by the server to

parse the request (lines 35–41). (To avoid this replication of work, we could have

shared the parsed components of the request in char [] arrays, which would have
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complicated the example.)

The servlet extracts the word that is to be looked up (line 43–44) and sends a

reply to the client (lines 47–78). Note that the shared file descriptor in the request

object is directly used to construct a java.io.FileOutputStream object (lines 47–

49) that is subsequently passed to a regular java.io.PrintWriter(OutputStream)

constructor, which again demonstrates the ease with which KaffeOS processes make

use of shared objects. Once the servlet has processed the request and sent the reply,

it recycles the request object (line 81).

1 import kaffeos.sys.*;
2 import kaffeos.sys.Process;
3 import kaffeos.resource.CpuResource;
4 import shared.HttpServerQueue;
5 import shared.HttpServerQueue.Request;
6 import shared.GermanEnglishDictionary;
7 import java.io.*;
8 import java.util.*;
9 import java.lang.reflect.*;

10

11 /**
12 * micro-servlet class for dictionary example
13 */
14 public class DictionaryServlet {
15

16 /* initialize shared data structures */
17 public static void main(String []av) throws Throwable {
18 Shared sh = Shared.registerClass("shared.HttpServerQueue", 1);
19 Shared she = Shared.registerClass("shared.GermanEnglishDictionary", 1);
20 serve(sh, she, Integer.parseInt(av[0]));
21 }
22

23 /**
24 * main servlet loop
25 */
26 public static void serve(Shared shqueue, Shared shdict, int queuenr) {
27 HttpServerQueue ds = (HttpServerQueue)shqueue.getObject(0);
28 GermanEnglishDictionary dict = (GermanEnglishDictionary)shdict.getObject(0);
29

30 try {
31 while (true) {
32 // get next request from queue
33 Request req = ds.getNextRequest(queuenr);
34

35 BufferedReader br =
36 new BufferedReader(
37 new InputStreamReader(
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38 new ByteArrayInputStream(req.getBuffer())));
39 StringTokenizer st = new StringTokenizer(br.readLine());
40 st.nextToken(); // skip GET command.
41 String request = st.nextToken();
42

43 int wi = request.indexOf("w=");
44 String w = wi > 0 ? request.substring(wi + 2) : null;
45

46 // construct regular print writer from shared fd
47 PrintWriter p = new PrintWriter(
48 new FileOutputStream(
49 new FileDescriptor(req.getConnection())));
50

51 p.print("HTTP/1.0 200\r\n"
52 + "Content-Type: text/html\r\n\r\n"
53 + "<html><body bgcolor=white><h3>");
54 if (w != null) {
55 p.println("English: " + w);
56 String g = dict.lookup(w);
57 if (g != null) {
58 p.println("<br>German: " + g);
59 } else {
60 p.println("<br><font color=red>"
61 + "is not in dictionary</font>");
62 }
63 }
64 p.println("</h3>There are " + dict.size()
65 + " entries in the dictionary.<br><form>"
66 + "Please choose a servlet: <select name=s>");
67 for (int i = 0; i < 2; i++) {
68 p.println("<option value=" + i + " "
69 + (queuenr == i ? "selected" : "") + ">");
70 p.println("Servlet #" + i + "</option>");
71 }
72 p.println("</select>"
73 + "<br>Please enter a word: "
74 + "<input name=w type=text></form>"
75 + "<p>You have been served by <i>"
76 + Kernel.currentProcess().getCpuResource()
77 + "</i></body></html>");
78 p.close();
79

80 // done with request, return to shared queue
81 ds.putEmptyRequest(req);
82 }
83 } catch (Exception _) {
84 _.printStackTrace(System.err);
85 }
86 }
87 }



REFERENCES

[1] Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R.,
Tevanian, A., and Young, M. Mach: A new kernel foundation for
UNIX development. In Proceedings of the Summer 1986 USENIX Conference
(Atlanta, GA, June 1986), pp. 93–112.

[2] Bacon, D. F., Konuru, R., Murthy, C., and Serrano, M. Thin locks:
Featherweight synchronization for Java. In Proceedings of the SIGPLAN ’98
Conference on Programming Language Design and Implementation (Montreal,
Canada, May 1998), ACM, pp. 258–268.

[3] Baker, H. G. The treadmill, real-time garbage collection without motion
sickness. ACM Sigplan Notices 27, 3 (March 1992), 66–70.

[4] Balfanz, D., and Gong, L. Experience with secure multi-processing in
Java. In Proceedings of the 18th International Conference on Distributed
Computing Systems (Amsterdam, Netherlands, May 1998), pp. 398–405.

[5] Banga, G., Druschel, P., and Mogul, J. C. Resource containers: A
new facility for resource management in server systems. In Proceedings of
the Third Symposium on Operating Systems Design and Implementation (New
Orleans, LA, February 1999), pp. 45–58.

[6] Berger, E. D., McKinley, K. S., Blumofe, R. D., and Wilson,
P. R. Hoard: A scalable memory allocator for multithreaded applications. In
Proceedings of the Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems (Cambridge, MA, November
2000), ACM, pp. 117–128.

[7] Bergsten, H. JavaServer Pages, 1st ed. O’Reilly & Associates, Inc.,
Sebastopol, CA, December 2000.

[8] Bernadat, P., Lambright, D., and Travostino, F. Towards a resource-
safe Java for service guarantees in uncooperative environments. In Proceedings
of the IEEE Workshop on Programming Languages for Real-Time Industrial
Applications (Madrid, Spain, December 1998), pp. 101–111.

[9] Bershad, B., Savage, S., Pardyak, P., Becker, D., Fiuczynski, M.,
and Sirer, E. Protection is a software issue. In Proceedings of the Fifth
Workshop on Hot Topics in Operating Systems (Orcas Island, WA, May 1995),
pp. 62–65.



157

[10] Bershad, B., Savage, S., Pardyak, P., Sirer, E., Fiuczynski, M.,
Becker, D., Eggers, S., and Chambers, C. Extensibility, safety and
performance in the spin operating system. In Proceedings of the 15th Sym-
posium on Operating Systems Principles (Copper Mountain, CO, December
1995), pp. 267–284.

[11] Bershad, B. N., Anderson, T. E., Lazowska, E. D., and Levy, H. M.
Lightweight remote procedure call. ACM Transactions on Computer Systems
8, 1 (February 1990), 37–55.

[12] Birrell, A. D., and Nelson, B. J. Implementing remote procedure calls.
ACM Transactions on Computer Systems 2, 1 (February 1984), 39–59.

[13] Bishop, P. B. Computer Systems with a Very Large Address Space and
Garbage Collection. PhD thesis, Massachusetts Institute of Technology Labo-
ratory for Computer Science, Cambridge, MA, May 1977.

[14] Bollella, G., Gosling, J., Brosgol, B., Dibble, P., Furr, S., and
Turnbull, M. The Real-Time Specification for Java, 1st ed. The Java Series.
Addison-Wesley, Reading, MA, January 2000.

[15] Bothner, P. Kawa—compiling dynamic languages to the Java VM. In
Proceedings of the USENIX 1998 Technical Conference, FREENIX Track (New
Orleans, LA, June 1998), USENIX Association, pp. 261–272.

[16] Chan, P., and Lee, R. The Java Class Libraries: Volume 2, 2nd ed. The
Java Series. Addison-Wesley, October 1997.

[17] Chan, P., Lee, R., and Kramer, D. The Java Class Libraries: Volume
1, 2nd ed. The Java Series. Addison-Wesley, March 1998.

[18] Chase, J. S. An Operating System Structure for Wide-Address Architectures.
PhD thesis, Department of Computer Science and Engineering, University of
Washington, Seattle, WA, August 1995.

[19] Cheng, P., Harper, R., and Lee, P. Generational stack collection and
profile-driven pretenuring. In Proceedings of the SIGPLAN ’98 Conference on
Programming Language Design and Implementation (Montreal, Canada, June
1998), pp. 162–173.

[20] Cheriton, D. R., and Duda, K. J. A caching model of operating
system kernel functionality. In Proceedings of the First Symposium on Op-
erating Systems Design and Implementation (Monterey, CA, November 1994),
pp. 179–193.

[21] Czajkowski, G. Application isolation in the Java virtual machine. In
Proceedings of the ACM Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA ’00) (Minneapolis, MN, October
2000), pp. 354–366.



158

[22] Czajkowski, G., Chang, C.-C., Hawblitzel, C., Hu, D., and von
Eicken, T. Resource management for extensible Internet servers. In Pro-
ceedings of the Eighth ACM SIGOPS European Workshop (Sintra, Portugal,
September 1998), pp. 33–39.

[23] Czajkowski, G., and Daynès, L. Multitasking without compromise: A
virtual machine evolution. In Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA ’01)
(Tampa Bay, FL, October 2001), pp. 125–138.

[24] Czajkowski, G., Daynès, L., and Wolczko, M. Automated and
portable native code isolation. Tech. Rep. 01-96, Sun Microsystems Labo-
ratories, April 2001.

[25] Czajkowski, G., and von Eicken, T. JRes: a resource accounting
interface for Java. In Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA ’98) (Vancou-
ver, BC, October 1998), pp. 21–35.

[26] Dahm, M. Byte code engineering. In JIT ’99 - Java-Informations-Tage
(Tagungsband) (Düsseldorf, Germany, September 1999), C. H. Cap, Ed.,
Springer-Verlag, pp. 267–277.

[27] Dieckmann, S., and Hölzle, U. A study of the allocation behavior of
the SPECjvm98 Java benchmarks. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP’99) (Lisbon, Portugal, June 1999),
Lecture Notes in Computer Science 1628, Springer-Verlag, pp. 92–115.

[28] Dijkstra, E. W., Lamport, L., Martin, A. J., Scholten, C. S.,
and Steffens, E. F. M. On-the-fly garbage collection: An exercise in
cooperation. Communications of the ACM 21, 11 (November 1978), 966–975.

[29] Dillenberger, D., Bordawekar, R., Clark, C. W., Durand, D.,
Emmes, D., Gohda, O., Howard, S., Oliver, M. F., Samuel, F., and
John, R. W. S. Building a Java virtual machine for server applications: The
JVM on OS/390. IBM Systems Journal 39, 1 (2000), 194–210.

[30] Diwan, A., Moss, E., and Hudson, R. Compiler support for garbage
collection in a statically typed language. In Proceedings of the SIGPLAN ’92
Conference on Programming Language Design and Implementation (Las Vegas,
NV, June 1992), ACM, pp. 273–282.

[31] Dorward, S., Pike, R., Presotto, D. L., Ritchie, D. M., Trickey,
H., and Winterbottom, P. The Inferno operating system. Bell Labs
Technical Journal 2, 1 (1997), 5–18.

[32] Druschel, P., and Banga, G. Lazy receiver processing (LRP): A network
subsystem architecture for server systems. In Proceedings of the Second
Symposium on Operating Systems Design and Implementation (Seattle, WA,
October 1996), pp. 261–275.



159

[33] Engler, D., Chelf, B., Chou, A., and Hallem, S. Checking system
rules using system-specific, programmer-written compiler extensions. In Pro-
ceedings of the Fourth Symposium on Operating Systems Design and Imple-
mentation (San Diego, CA, October 2000), USENIX Association, pp. 1–16.

[34] Engler, D. R., Kaashoek, M. F., and O’Toole Jr., J. Exokernel: An
operating system architecture for application-level resource management. In
Proceedings of the 15th Symposium on Operating Systems Principles (Copper
Mountain, CO, December 1995), pp. 251–266.

[35] Farkas, K., Flinn, J., Back, G., Grunwald, D., and Anderson, J.
Quantifying the energy consumption of a pocket computer and a Java virtual
machine. In Proceedings of the 2000 Conference on Measurement and Modeling
of Computer Systems (Santa Clara, CA, June 2000), pp. 252–263.

[36] Ford, B., Hibler, M., Lepreau, J., Tullmann, P., Back, G., and
Clawson, S. Microkernels meet recursive virtual machines. In Proceedings
of the Second Symposium on Operating Systems Design and Implementation
(Seattle, WA, October 1996), USENIX Association, pp. 137–151.

[37] Ford, B., and Susarla, S. CPU inheritance scheduling. In Proceedings
of the Second Symposium on Operating Systems Design and Implementation
(Seattle, WA, October 1996), USENIX Association, pp. 91–105.

[38] Franz, M. Beyond Java: An infrastructure for high-performance mobile code
on the World Wide Web. In Proceedings of WebNet ’97, World Conference of
the WWW, Internet, and Intranet (Toronto, Canada, October 1997), S. Lo-
bodzinski and I. Tomek, Eds., Association for the Advancement of Computing
in Education, pp. 33–38.

[39] Gay, D., and Aiken, A. Memory management with explicit regions.
In Proceedings of the SIGPLAN ’98 Conference on Programming Language
Design and Implementation (Montreal, Canada, June 1998), pp. 313–323.

[40] Gorrie, L. Echidna — A free multiprocess system in Java.
http://www.javagroup.org/echidna/.

[41] Hansen, P. B. Java’s insecure parallelism. SIGPLAN Notices 34, 4 (April
1999), 38–45.

[42] Hawblitzel, C., Chang, C.-C., Czajkowski, G., Hu, D., and von
Eicken, T. Implementing multiple protection domains in Java. In
Proceedings of the 1998 USENIX Annual Technical Conference (New
Orleans, LA, June 1998), pp. 259–270.

[43] Hawblitzel, C. K. Adding Operating System Structure to Language-Based
Protection. PhD thesis, Department of Computer Science, Cornell University,
June 2000.



160

[44] Heiser, G., Elphinstone, K., Vochteloo, J., Russell, S., and
Liedtke, J. The Mungi single-address-space operating system. Software
Practice and Experience 28, 9 (1998), 901–928.

[45] Huelsbergen, L., and Winterbottom, P. Very concurrent
mark-&-sweep garbage collection without fine-grain synchronization. In
Proceedings of the International Symposium on Memory Management
(Vancouver, BC, October 1998), ACM, pp. 166–175.

[46] Institute of Electrical and Electronics Engineers, Inc.
Information Technology — Portable Operating System Interface (POSIX) —
Part 1: System Application Program Interface (API) [C Language], 1996.
Std 1003.1, 1996 edition.

[47] Jaeger, T., Liedtke, J., and Islam, N. Operating system protection for
fine-grained programs. In Proceedings of the Seventh USENIX Security
Symposium (San Antonio, TX, January 1998), pp. 143–157.

[48] Java Apache Project. The Apache JServ project.
http://java.apache.org/jserv, April 2000.

[49] Joy, B., Steele, G., Gosling, J., and Bracha, G. The Java Language
Specification, 2nd ed. The Java Series. Addison-Wesley, June 2000.

[50] Jul, E., Levy, H., Hutchison, N., and Black, A. Fine-grained
mobility in the Emerald system. ACM Transactions on Computer Systems 6,
1 (February 1988), 109–133.

[51] Lamport, L. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM 21, 7 (July 1978), 558–565.

[52] Lepreau, J., Hibler, M., Ford, B., and Law, J. In-kernel servers on
Mach 3.0: Implementation and performance. In Proceedings of the Third
USENIX Mach Symposium (Santa Fe, NM, April 1993), pp. 39–55.

[53] Liang, S. The Java Native Interface: Programmer’s Guide and
Specification, 1st ed. The Java Series. Addison-Wesley, June 1999.

[54] Liang, S., and Bracha, G. Dynamic class loading in the Java virtual
machine. In Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA ’98)
(Vancouver, BC, October 1998), pp. 36–44.

[55] Lizt, J. Oracle JServer Scalability and Performance. http://www.oracle.
com/java/scalability/index.html?testresults_twp.html, July 1999.
Java Products Team, Oracle Server Technologies.

[56] Malkhi, D., Reiter, M. K., and Rubin, A. D. Secure execution of Java
applets using a remote playground. In Proceedings of the 1998 IEEE
Symposium on Security and Privacy (Oakland, CA, May 1998), pp. 40–51.



161

[57] Marlow, S., Jones, S. P., Moran, A., and Reppy, J. Asynchronous
exceptions in haskell. In Conference on Programming Language Design and
Implementation (Snowbird, UT, June 2001), ACM, pp. 274–285.

[58] McGraw, G., and Felten, E. Java Security: Hostile Applets, Holes, and
Antidotes. Wiley Computer Publishing. John Wiley and Sons, New York,
NY, January 1997.

[59] Pike, R. Personal Communication, April 2000.

[60] Pike, R., Presotto, D., Dorward, S., Flandrena, B., Thompson,
K., Trickey, H., and Winterbottom, P. Plan 9 from Bell Labs.
Computing Systems 8, 3 (Summer 1995), 221–254.
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