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Abstract

Relaxed-memory concurrency is now mainstream in both hardware and programming

languages, but there is little support for the programmer of such systems. In this highly

non-deterministic setting, ingrained assumptions like causality or the global view of mem-

ory do not hold. It is dangerous to use intuition, specifications are universally unreliable,

and testing outcomes are dependent on hardware that is getting more permissive of odd

behaviour with each generation. Relaxed-memory concurrency introduces complications

that pervade the whole system, from processors, to compilers, programming languages

and software.

There has been an effort to tame some of the mystery of relaxed-memory systems by

applying a range of techniques, from exhaustive testing to mechanised formal specifica-

tion. These techniques have established mathematical models of hardware architectures

like x86, Power and ARM, and programming languages like Java. Formal models of these

systems are superior to prose specifications: they are unambiguous, one can prove proper-

ties about them, and they can be executed, permitting one to test the model directly. The

clarity of these formal models enables precise critical discussion, and has led to the dis-

covery of bugs in processors and, in the case of Java, x86 and Power, in the specifications

themselves.

In 2011, the C and C++ languages introduced relaxed-memory concurrency to the

language specification. This was the culmination of a six-year process on which I had a

significant impact. This thesis details my work in mathematically formalising, refining

and validating the 2011 C and C++ concurrency design. It provides a mechanised formal

model of C and C++ concurrency, refinements to the design that removed major errors

from the specification before ratification, a proof in HOL4 (for a restricted set of programs)

that the model supports a simpler interface for regular programmers, and, in collaboration

with others, an online tool for testing intuitions about the model, proofs that the language

is efficiently implementable above the relaxed x86 and Power architectures, a concurrent

reasoning principle for proving specifications of libraries correct, and an in-depth analysis

of problems that remain in the design.

mailto:mbatty@cantab.net
http://www.cl.cam.ac.uk/~mjb220/
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Chapter 1

Introduction

The advent of pervasive concurrency has caused fundamental design changes throughout

computer systems. In a bid to offer faster and faster machines, designers had been pro-

ducing hardware with ever higher clock frequencies, leading to extreme levels of power

dissipation. This approach began to give diminishing returns, and in order to avoid phys-

ical limitations while maintaining the rate of increase in performance, processor vendors

embraced multi-core designs. Multi-core machines contain several distinct processors that

work in concert to complete a task. The individual processors can operate at lower fre-

quencies, while collectively possessing computing power that matches or exceeds their

single core counterparts. Unfortunately, multi-core processor performance is sensitive to

the sort of work they are given: large numbers of wholly independent tasks are ideal,

whereas monolithic tasks that cannot be split up are pathological. Most tasks require

some communication between cores, and the cost of this communication limits perfor-

mance on multi-core systems.

Communication between cores in mainstream multi-core machines is enabled by a

shared memory. To send information from one core to another, one core writes to mem-

ory and the other reads from memory. Unfortunately, memory is extremely slow when

compared with computation. Processor designers go to great lengths to reduce the la-

tency of memory by introducing caches and buffers in the memory system. In the design

of such a memory, there is a fundamental choice: one can design intricate protocols that

hide the details, preserving the illusion of a simple memory interface while introducing

communication delay, or one can allow memory accesses to appear to happen out of order,

betraying some of the internal workings of the machine. Mainstream processor vendors

all opt for the latter: ARM, IBM’s Power, SPARC-TSO, and Intel’s x86 and Itanium

architectures allow the programmer to see strange behaviour at the interface to memory

in order to allow agressive optimisation in the memory subsystem.

The behaviour of memory is often abstracted from the rest of the computer system,

and is defined by a memory model — a description of the allowable behaviours of the

memory system. A simple memory model might guarantee that all threads’ loads and

13
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stores to memory are interleaved, to form a sequence in which they take effect. A memory

model that exposes more behaviours than this simple model is said to be relaxed.

Programming languages for concurrent systems must also define an interface to mem-

ory, and face the same choice of whether to permit relaxed behaviour or not. Relaxed

behaviour can be introduced at the language level either by the underlying processor, or

by optimisations in the compiler. If the language decides to forbid relaxed behaviour, then

the compiler must disable any optimisations that observably reorder memory accesses, and

insert instructions to the processor to disable relaxed behaviour on the hardware. There is

an important tradeoff here: disabling these optimisations comes at a cost to performance,

but allowing relaxed behaviour makes the semantics of programs much more difficult to

understand.

This thesis describes my work on the relaxed memory model that was introduced in

the 2011 revision of the C++ programming language (C++11), and that was adopted by

the 2011 revision of C (C11). I chose to work on these languages for several reasons. C

is the de facto systems programming language, and intricate shared-memory algorithms

have an important role in systems programming. The specification of the language was

written in a style that was amenable to a formal treatment, and there were stated design

goals that could be established with proof. The language specifications had not yet been

ratified when I started analysing them, so there was the potential for wide impact.

To get a flavour of both the behaviour that relaxed memory models allow, and how

one uses the new features of C/C++11, consider the following message-passing example

(written in C-like pseudocode) where a flag variable is used to signal to another thread

that a piece of data is ready to be read:

int data = 0;

int flag = 0;

data = 1; while (flag <> 1){}

flag = 1; r = data;

Here, a parent thread initialises two integer locations in memory, data and flag, each

to the value 0, and then creates two threads, separated by a double bar indicating parallel

composition: one that writes 1 to data and then to flag, and another that repeatedly

reads from flag, waiting for the value 1 before reading data, then storing the result in

thread-local variable r, whose initialisation is elided.

One might expect this program to only ever terminate with the final value 1 of variable

r: that is the only outcome allowed by a naive interleaving of the accesses on each thread.

But an analogous program executed on a Power or ARM processor could, because of

optimisations in the memory system, terminate with value 0 stored to r, and to similar

effect, a compiler might reorder the writes to data and flag when optimising the left-

hand thread. This behaviour breaks our informal specification of this code: the data was

not ready to be read when we saw the write of the flag variable. In general, as in this
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case, relaxed behaviour can be undesirable: the correctness of the program might depend

on its absence.

Hardware architectures like Power and ARM give the programmer barrier instructions

that can be inserted to forbid this sort of behaviour, but inserting them degrades perfor-

mance. In a similar fashion, C/C++11 provides the programmer with the atomics library

that can be used to forbid the outcome where r reads 0, as in the following example:

int data = 0;

atomic int flag = 0;

data = 1; while (flag.load(acquire) <> 1){}

flag.store(1,release); r = data;

Here the flag variable is declared as an atomic, and loads and stores of flag use a

different syntax that includes a memory-order parameter (release and acquire, above).

These new load and store functions perform two tasks: depending on the chosen memory

order, they forbid some compiler optimisations, and they force the insertion of barrier

instructions on some target architectures. Together, the choice of atomic accesses and

memory-order parameters above forbids the outcome where r reads 0.

The 2011 C and C++ standard documents describe a memory model that defines

the behaviour of these atomic accesses. The 2014 revision of C++ leaves this model

unchanged, with only minor updates. Prior to 2011, the semantics of concurrent memory

accesses in both languages had been specified by the Posix thread library [53], but in 2005

Hans Boehm noted [36] that when concurrency is described by a library, separate from

the language specification, then there is a circularity between the two in the definition of

the semantics. Following this observation, there was an effort to define the concurrency

behaviour of C++ within the language specification. This thesis focuses on the relaxed

memory model that was developed over the subsequent 6 years.

Programming language memory models Language designers have great freedom in

their choice of memory model, and here we explore that design space. First we motivate

the need for memory models, and then discuss minimal features that are necessary for

concurrent programming. We go on to discuss the merits of models that provide strong

ordering guarantees, and contrast them with the advantages of more relaxed models.

Finally we discuss models that impose requirements on the programmer that are intended

to provide some advantages of both strong and relaxed models.

A programming language might abstain from defining a memory model, and leave

the language subject to the relaxed behaviour introduced by the target hardware and

the optimisations of a particular compiler, but this damages program portability: differ-

ent choices of compiler optimisations or a different series of processor within a common

architecture may admit different behaviours. To be assured of the correctness of their

code, a developer would have to test each supported configuration individually. Worse
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still, relaxed-concurrency bugs can be sensitive to the execution environment and manifest

with low probability, so this scheme mandates enormous testing resources. A well-defined

memory model provides an abstraction of all of the various platforms that a program

might execute above, and constrains their behaviour. It is then the responsibility of com-

piler writers and processor vendors to ensure that each platform meets the guarantees

provided by the memory model. Defining a memory model enables the creation of tools

that support portable concurrent programming, and avoids the need for interminable

testing resources.

Attiya et al. showed that any concurrent programming language must include a min-

imal set of features in order to enable the programmer to construct consensus during the

execution of their programs [19]; multiple threads must be able to agree on the state of

a given piece of data. In a relaxed memory model, this can be an expensive operation:

it requires some level of global synchronisation. On the hardware, the operations that

provide this feature may be tightly linked to the hardware optimisations that they re-

strict, but in programming languages, the analogous constructs can be more intuitive.

The specification of such features represents one axis in the design space.

The language memory model can provide strong ordering of memory accesses, or it

can allow reordering. Strongly ordered memory models like sequential consistency (SC,

see §2 for more details), where memory accesses are simply interleaved, have the advantage

of usability: programmers need not consider intricate interactions of relaxed concurrent

code — the most complex behaviour is simply forbidden. On the other hand, strong

models force the compiler to emit code that implements the strong ordering guaranteed

by the language. That may restrict the optimisations and force the introduction of explicit

synchronisation in the emitted binaries, with a substantial overhead on modern multi-core

processors.

At the other end of the spectrum, languages can provide a very relaxed memory model

with the possibility of efficient implementation above relaxed processors, but this exposes

the programmer to additional complexity. If the guarantees about the ordering of memory

are too weak, then it can be impossible to build programs that implement reasonable

specifications. Relaxed models can include explicit synchronisation features that allow

the programmer to specify stronger ordering in parts of the program. This might take

the form of mutexes, fences, barriers, or the memory-order annotations present in the

example above. Given a relaxed model with these features, the programmer is burdened

with the delicate task of inserting enough explicit synchronisation to ensure correctness,

without introducing too much and spoiling performance.

Languages can provide a stronger model while maintaining efficient implementability

by requiring a particular programming discipline. If programmers are required to avoid

certain patterns, then their absence becomes an invariant for optimisation within the

compiler. If a program fails to obey the discipline, then the language provides weaker

guarantees about its behaviour.
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All of these design decisions represent tradeoffs, and there is no universally superior

approach; memory models should be designed in sympathy with the expected use of the

programming language.

The C/C++ memory model This thesis focuses on the memory model shared by C

and C++. Not only are C and C++ extremely well-used languages, but they represent

the state of the art in memory-model design for mainstream programming languages.

The C and C++ languages aspire to be portable, usable by regular programmers who

require an intuitive setting, and suitable for expert programmers writing high-performance

code. For portability, the language defines a memory model, and for performance that

model is relaxed.

The model is stratified by the complexity of its features. In its simplest guise, the

memory model provides an intuitive setting for those who write single-threaded programs:

the order of memory accesses is similar to that provided by previous sequential versions of

the language. For programmers who want to write concurrent programs, there is extensive

support provided in the concurrency libraries. This ranges from locks and unlocks, to the

atomics library, that provides a low-level high-performance interface to memory.

The C/C++11 memory model design was strongly influenced by the work of Adve,

Gharachorloo and Hill [12, 10, 11], who proposed a memory model whose programming

discipline dictates that programs must annotate memory accesses that might take part in

data races : two accesses on different threads that concurrently contend on the same piece

of data. Following this work, in 2008 [37], Boehm and Adve described a simplified precur-

sor of the C/C++11 memory-model design, imposing a similar programming discipline:

programmers must declare objects that might be accessed in a racy way, these objects

must be accessed only through the atomics library, and data races on all other objects

must be avoided. If this discipline is violated in any execution of the program, then every

execution has undefined behaviour . This is called a “catch-fire semantics” because pro-

grams with undefined behaviour are free to do anything — catch fire, order a thousand

pizzas, email your resignation, and so on. This design choice carries a heavy cost to the us-

ability of the language. Suppose a programmer identifies buggy behaviour in part of their

program, and would like to debug their code. The program may be behaving strangely

because of a race in a completely different part of the program, and this race may not

even have been executed in the buggy instance. Debugging such a problem could be very

difficult indeed. Note that this model of system programming does not match practice,

where programmers try to understand racy programs in terms of an assumed model of

the system comprising the compiler and the details of the underlying hardware. In this

(unsanctioned) model of the system it is possible to debug racy programs by observing

their behaviour, unlike in C/C++11.

Following earlier C++ design discussions [38, 35], Boehm and Adve provided a cri-

teria under which programs executed in their relaxed memory model behave according
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to sequential consistency [37], and this became a design goal of the C/C++11 memory

model: programs that do not have any un-annotated data races, and that avoid using

the lowest-level interface to memory, should execute in a sequentially consistent manner.

This provides programmers who do not need to use the highest-performance features with

an intuitive memory model (for race-free programs). The guarantee went further, stating

that races can be calculated in the context of the sequentially-consistent memory model,

rather than in the far more complex setting of the relaxed memory model. This is a pow-

erful simplification that allows some programmers to be shielded from the full complexity

of the memory model, while experts have access to high-performance features. Although,

in early drafts of the C/C++11 standards, this laudable design goal was compromised

(details in Chapter 5), the ratified language does provide this guarantee, as we show in

Chapter 6.

The atomics library The atomics library provides versions of commonly used primitive

data structures, like fixed-width integers, that can be used to write well-defined racy code.

Accessor functions are used to read and write atomic variables. The C11 syntax for some

of these is given below:

atomic load explicit(&x,memory order)

atomic store explicit(&x, v, memory order)

atomic compare exchange weak explicit(&x, &d, v, memory order, memory order)

The memory order argument decides how much ordering the access will create in an

execution. There are six choices of memory order:

memory order seq cst,

memory order acq rel,

memory order acquire,

memory order release,

memory order consume, and

memory order relaxed.

This list is roughly in order, from strong to weak and expensive to cheap: mem-

ory order seq cst can, under certain circumstances, provide sequentially-consistent

behaviour with a substantial cost to performance, whereas accesses given mem-

ory order relaxed exhibit many relaxed behaviours, but enable one to write very

high-performance code. Typical concurrent programmers should use the former, whose

behaviour is relatively straightforward, and expert programmers can use the whole gamut
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of memory orders for fine-grained control over the ordering of memory accesses. The

C/C++11 memory model allows a superset of the relaxed behaviour allowed by its target

architectures. By choosing stronger memory orders, one can forbid this relaxed behaviour.

1.1 Focus of this thesis

The C and C++ memory models are defined by the International Standards Organisa-

tion (ISO) in two lengthy standard documents [30, 8]. Prior to my work, there were

drafts describing the C/C++11 memory model, but those drafts, despite careful crafting

by experts, were not known to describe a usable language memory model. The prose

specifications were untestable, and the model was not well understood. It was not for-

mally established whether the design was implementable, programmable, concise, or even

internally consistent, nor had the central design tenets, laid out early in the design pro-

cess [38, 35] and reiterated by Boehm and Adve [37], been established.

In my work, I have sought to understand the C/C++11 memory model in formal

terms, to fix parts that were broken, to prove that the design is usable, and, where fixing

problems was not yet possible, to highlight outstanding issues. In this thesis I assess the

C/C++11 memory model design, presenting a clear and complete picture of a mainstream

programming-language relaxed memory model. This effort both improved the C/C++11

definition and can inform the design of future programming-language memory models.

1.2 Contributions

Chapter 3 describes a formal version of the C/C++11 memory model that was developed

in close contact with the standardisation committee. Work on this model fed corrections

back to the language specification, and as a consequence, it is very closely in tune with

the intention of the committee, and the ratified prose specification. The formal model is

written in the specification language Lem [85, 90], and is readable, precise and executable

(the full definitions are provided in Appendix C). The features of the model are introduced

in stages through a series of cut-down models that apply to programs that do not use all

of the language features. This chapter also presents a simplified model omits a redundant

part of the specification. This work was developed in discussion with Scott Owens, Susmit

Sarkar, and Peter Sewell, but I played the leading role. It was published in POPL in

2011 [28].

Chapter 4 describes Cppmem, a tool that takes very small programs and calculates

all of the behaviours allowed by the memory model. Cppmem is joint work with Scott

Owens, Jean Pichon, Susmit Sarkar, and Peter Sewell. I contributed to the initial design

of the tool, and the tool uses an automatic OCaml translation of my formal memory

model produced by Lem. Cppmem is invaluable for exploring the behaviour of the mem-
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ory model. It has been used for communication with the ISO standardisation committee,

for teaching the memory model to students, and by ARM, Linux and GCC engineers who

wish to understand C/C++11. Cppmem was described in POPL in 2011 [28], and an

alternative implementation of the backend that used the Nitpick counterexample gener-

ator [31] was published in PPDP in 2011 [32], in work by Weber and some of the other

authors.

Chapter 5 describes problems found with the standard during the process of formal-

isation, together with solutions that I took to the C and C++ standardisation commit-

tees. Many amendments were adopted by both standards in some form. This achieve-

ment involved discussing problems and drafting text for amendments with both my aca-

demic collaborators and many on the standardisation committee, including: Hans Boehm,

Lawrence Crowl, Peter Dimov, Benjamin Kosnik, Nick Maclaren, Paul McKenney, Clark

Nelson, Scott Owens, Susmit Sarkar, Peter Sewell, Tjark Weber, Anthony Williams, and

Michael Wong. Some of these problems broke the central precepts of the language de-

sign. My changes fix these problems and are now part of the ratified standards for C11

and C++11 [30, 8], as well as the specification of the GPU framework, OpenCL 2.0 [86].

This chapter ends by identifying an open problem in the design of relaxed-memory pro-

gramming languages, called the “thin-air” problem, that limits the compositionality of

specifications, and leaves some undesirable executions allowed that will not appear in

practice. This leaves the memory model sound, but not as precise as we would like.

Many of the comments and criticisms were submitted as working papers and defect re-

ports [29, 20, 75, 73, 111, 27, 76, 77, 74].

Chapter 6 describes a mechanised HOL4 proof that shows the equivalence of the

progressively simpler versions of the C/C++11 memory model, including those presented

in Chapter 3, under successively tighter requirements on programs. These results establish

that a complicated part of the specification is redundant and can simply be removed,

and they culminate in the proof that the specification meets one of its key design goals

(albeit for programs without loops or recursion): despite the model’s complexity, if a race-

free program uses only regular memory accesses, locks and seq cst-annotated atomic

accesses, then it will behave in a sequentially consistent manner. This proof validates

that the model is usable by programmers who understand sequential consistency.

Chapter 7 describes work done in collaboration with Jade Alglave, Luc Maranget,

Kayvan Memarian, Scott Owens, Susmit Sarkar, Peter Sewell, Tjark Weber and Derek

Williams. We took the compilation mappings from C/C++11 to the x86, Power and

ARM architectures that had been proposed by the C++11 design group and proved that

they do indeed preserve the semantics of the programming-language memory model in

execution above those processors. This led to the discovery and resolution of a flaw in

one of the mappings. This chapter represents a second form of validation of the formal

model: it is implementable above common target architectures. My contribution, which

was smaller in this work, involved proving equivalent variants of the C/C++11 memory
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model that more closely matched the processors, and discussion of cases in the proof of

soundness of the mappings. This work was published in POPL 2011, POPL 2012 and

PLDI 2012 [26, 96, 28].

Chapter 8 describes work with Mike Dodds and Alexey Gotsman, developing a compo-

sitional reasoning principle for C/C++11. This takes the form of an abstraction relation

between a library specification and its implementation. If the specification abstracts the

implementation, then we show that the behaviour of a program consisting of arbitrary

client code calling the library implementation is a subset of the behaviour of the same

client calling the specification. We use this abstraction theorem to prove that an imple-

mentation of a concurrent data structure, the Treiber stack, meets its specification. This

is another form of validation of the formal model: one can reason about programs with

it. My contribution involved writing the implementation and specification of the Treiber

Stack and producer-consumer examples, proving that the Treiber Stack specification ab-

stracts its implementation, and contributions to the proof of soundness of the abstraction

relation. This work was published in POPL 2013 [25].

Appendix A presents a key piece of evidence that validates the formal model: a side-by-

side comparison of the C++11 standard text [30] and the formal memory model presented

in Chapter 3, establishing a tight correspondence between the two. Appendix A follows

the text of the standard, and is suited to those more familiar with the text. Appendix B

presents the same link, following the structure of the model.

Together, this work represents the refinement and validation of a mainstream

programming-language memory model. My work establishes that one can write high-

performance programs with sound specifications in C/C++11, and that those programs

can be correctly compiled to common processor architectures. In the broader context,

this work provides a critical analysis of C/C++11 as an example of a relaxed-memory

programming language, and identifies design goals for future memory models. The work

serves as an example of the benefit of using rigorous semantics in language design and

specification.

1.3 Related work

The beginning of this chapter explained that the effort to define a memory model within

the C/C++11 specification was motivated by the work of Boehm, who observed that the

compiler can interfere with the semantics of relaxed concurrency primitives if they are

specified separately from the language [36].

The definition of the C/C++11 memory-model design borrows many concepts from

earlier work. The sequential consistency that C/C++11 provides to some programs

was first described by Lamport [60]. The combination of relaxed behaviour and ex-

plicit programmer-declared synchronisation was a feature of the weak ordering described
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by Dubois et al. [48]. C/C++11 coherence matches the coherence property of Censier

and Feautrier [42] The compare and swap feature of C/C++11 follows the IBM 370 in-

struction [44]. C/C++11 provides racy programs with undefined behaviour, a concept

borrowed from Adve, Gharachorloo and Hill [12, 10, 11] who defined memory models with

stronger guarantees for race-free programs. The C/C++11 memory model builds upon a

simple precursor model, defined by Boehm and Adve [37], who expressed the high-level

design intent of the memory model (that race-free programs using only the SC atomics

should behave in an SC manner), and proved this property of their memory model.

The C/C++11 memory model is expressed in an axiomatic style: the model is made

up of a predicate that decides whether a particular whole execution is allowed for a

given program, or not. There are several examples of early axiomatic memory models, by

Collier [43], by Kohli et al. [13], and by Adve et al. [12, 10]. Contrast this with operational

memory models, where the model is described as an abstract machine, with a state made

up of buffers and queues. Many formal hardware memory models adopt the operational

style [97, 71, 99, 91, 104], because hardware architecture specifications are often described

in terms of an abstract machine.

There are many formal memory models of hardware architectures. Sarkar et al. created

an operational formalisation of the x86 architecture’s memory model [99], following the

incomplete and ambiguous published specification documents of the time. This model

was superseded by the operational x86-TSO model of Owens et al. [91, 104], which is easy

to understand and is validated both by discussion with Intel and by hardware testing. We

describe this model in Chapter 2, and refer to it throughout this thesis. In a suggested

extension to the architecture, Rajaram et al. propose a hardware-optimised version of C11

read-modify-write operations on x86, including an alternative compilation scheme that

preserves the semantics of the language over systems using the optimised variants [93].

For the x86-TSO memory model, Owens provides a stronger alternative to the typical

SC-if-data-race-free guarantee, introducing triangular-race-freedom [89].

There are several formal Power memory models to note. Chapter 2 outlines the op-

erational model of Sarkar et al. [97, 71] that was developed together with Williams, a

leading processor designer at IBM, and was systematically tested against hardware. This

model can claim to match the architectural intent of the vendor. The axiomatic models

of Alglave et al. [14] are informed by systematic testing of hardware, with tests gener-

ated by the Diy tool [16], executed on current hardware with the Litmus tool [17], and

executed according to the model with the Herd tool [18]. This systematic testing led

to the discovery of a bug in the Power 5 architecture [16]. Mador-Haim et al. present

an axiomatic model [68] that is intended to be abstract and concise, while matching the

relatively intricate model of Sarkar et al.

There is an earlier body of work on the Java memory model (JMM), another relaxed-

memory language, with a rather different design (discussed in Section 5.10.3). Manson

et al. provided a formal description of the official JMM [70]. Cenciarelli et al. provided a
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structured operational semantics for the JMM and proved that it is correct with respect to

the language specification [41]. Huisman and Petri explore the JMM design and provide

a formalisation in Coq [52]. Lochbihler provides a mechanised formal specification of

the JMM in Isabelle/HOL, extended to cover a more complete set of features [66, 67].

The Java memory model is intended to admit compiler optimisations, and forbid thin-air

behaviour. Ševč́ık and Aspinall analysed this model and showed that it fails to admit

compiler optimisations that are performed by the Hotspot compiler, leaving the model

unsound over one of the key compilers for the language [101]. Demange et al. describe

an effort to retrofit Java with a buffered memory model similar to that of x86-TSO [46].

There has been some work on compilation of relaxed-memory languages. Ševč́ık et al.

extended Leroy’s verified compiler, Compcert [63], to a relaxed-concurrent variant of C

with a TSO memory model, in CompcertTSO [102, 103]. Morisset et al. made a theory

of sound optimisations over the C/C++11 memory model (as formalised in this thesis),

tested compilers and found several bugs in GCC [84].

There have been several formalisations of other parts of C and C++. Norrish provided

a mechanised formalisation of C expressions, establishing that a large class of them are

deterministic [88]. Ramananandro et al. formalised object layout in C++ and proved sev-

eral object-layout optimisations correct [94, 95]. Ellison presented a formal thread-local

semantics for C [49]. Krebbers formalised C11 dynamic typing restrictions in Coq [59].

Klein et al. provided a formal machine-checked verification of the single-threaded seL4 mi-

crokernel [58, 57]. A series of papers by Palmer et al. [92] and Li et al. [64, 65] present a for-

mal specification for a subset of MPI, the high-performance message-passing-concurrency

API. None of these addresses shared-memory concurrency.

One line of work has attempted to provide the programmer with a strongly-ordered

concurrency model while maintaining the performance of a relaxed model. Sasha and

Snir [105] propose recognising dependency cycles in a graph of program segments, and

using this analysis to add delay instructions that provide sequential consistency. Gotsman

et al. enable a relaxed implementation to hide behind a strongly-ordered interface: they

present a variant of linearisability that can be used to show that a library written above

the x86-TSO memory model matches a specification in an SC model [50]. To a similar end,

Jagadeesan et al. establish an abstraction theorem that allows one to provide sequential

specifications to code written above the SC, TSO, PSO and Java memory models [56].

Marino et al. quantify the cost of preserving an SC programming model in the com-

piler by altering internal LLVM passes to preserve SC, and measuring the slowdown [72].

Alglave et al. provide the Musketeer tool, that performs a scalable static analysis, and

automatically inserts fences in order to regain a strong memory model [15].

There are several approaches to the specification and verification of concurrent code in

the literature. Schwartz-Narbonne et al. provide a concurrent assertion language for an

SC memory model [100]. Burckhardt et al. define linearisability over the TSO memory

model [40].
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There has been some work on verification for C/C++11. In each piece of work, the

presence of thin-air values (discussed in Chapter 5) forces a compromise. Vafeiadis and

Narayan presented Relaxed Separation Logic (RSL) for reasoning about C11 programs,

and proved it sound in Coq over an augmented C++11 memory model that includes a very

strong restriction on thin-air values [110]. Turon et al. present Ghosts, Protocols, and

Separation (GPS), a program logic, that can also be used to reason about C11 programs

that use release and acquire atomics [109]. Norris and Demsky present CDSchecker, a

tool for exhaustive checking of executions of C11 programs [87]. Their tool incrementally

executes programs, and will miss executions that feature thin-air behaviour.

There have been several C11 implementations of concurrent data structures. Lê et al.

implement an efficient concurrent FIFO queue in C11, test its performance over several

hardware architectures, and prove that the code executes as a FIFO queue [61]. With

different authors, Lê et al. provide an optimised C11 implementation of Chase and Lev’s

deque [62].



Chapter 2

Background

This chapter includes a brief introduction to three memory models: sequential consistency,

the x86 memory model, and the Power memory model (ARM is similar to Power, SPARC-

TSO is similar to x86). Sequential consistency is a strong model that is considered to be

usable by regular programmers. The x86, Power and ARM architectures (together with

Itanium, that we do not consider in detail) represent the most important targets of the

C/C++11 language, so the relaxed behaviour that they allow is key to the C/C++11

memory model design. The chapter goes on to introduce the interaction of compiler

optimisations with the relaxed memory model, finishing with an overview of the C/C++11

memory model design and the process of its definition.

2.1 Sequential consistency

The simplest design choice one might make for a multi-core system would be to imagine

that all memory accesses across all cores are interleaved, and belong to a total order. Each

memory read would then get the value of the immediately preceding write to the same

location in the total order. This memory model is called sequential consistency (SC) and

was first articulated as such by Lamport [60].

To understand the flavour of sequential consistency, consider the following example

(written in C-like pseudocode). A parent thread initialises two integer locations in mem-

ory, x and y, each to the value 0 and then creates two threads: one that writes 1 to x and

then reads from y, and another that writes 1 to y and then reads from x. Variables r1

and r2 are used only to identify the outcome of the loads, and it is convenient to ignore

the memory effects of the writes to each. The example below presents the program using

a double bar to indicate the parallel composition of the two child threads, and uses layout

to indicate the parent thread above them.

25
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int x = 0;

int y = 0;

x = 1; y = 1;

r1 = y; r2 = x;

The SC memory model permits any interleaving of the accesses to memory that agrees

with the order apparent in the source text of the program, that is: thread-local program

order and parent-to-child thread order. The following table lists all possible interleavings

of the accesses to memory alongside the resulting outcomes for the values of r1 and r2:

Interleaving Outcome

x = 0; y = 0; x = 1; y = 1; r1 = y; r2 = x;

r1 = 1, r2 = 1
x = 0; y = 0; y = 1; x = 1; r1 = y; r2 = x;

x = 0; y = 0; x = 1; y = 1; r2 = x; r1 = y;

x = 0; y = 0; y = 1; x = 1; r2 = x; r1 = y;

x = 0; y = 0; x = 1; r1 = y; y = 1; r2 = x; r1 = 0, r2 = 1

x = 0; y = 0; y = 1; r2 = x; x = 1; r1 = y; r1 = 1, r2 = 0

Three outcomes are possible for r1 and r2: 1/1, 0/1, and 1/0. The program above

is a litmus test — a small program, used to test whether a memory model exhibits a

particular non-SC memory behaviour.

The SC memory model can be thought of as an abstract machine consisting of a single

shared memory serving a set of threads, each of which can take steps writing or reading

the memory. The following diagram represents this abstract machine:

Shared Memory

Thread Thread

Any memory model that admits behaviour that is not allowed by the SC model, the

outcome 0/0 in the test above for instance, is said to be relaxed . Real processors in-

clude intricate optimisations of memory that involve caching and buffering. Maintaining

a fully sequentially consistent interface for the programmer would require hiding such

optimisations, ultimately reducing performance, so processor designers allow some non-

sequentially consistent behaviour to be seen. The outcome 0/0 is allowed for an analogous

program on x86, Power and ARM processors, where optimisations in the memory sub-

system can delay the write on each thread from reaching the other until the reads have

read from the initialisation write. The following sections introduce two common processor

architectures: x86 and Power, sketching the details of the memory systems that are made

visible to the programmer.
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2.2 x86 and Dekker’s algorithm

The x86 model described here is that of Scott Owens, Susmit Sarkar, and Peter Sewell [91,

104]. The memory model has been validated both by extensive discussion with experts,

and by testing on hardware. It covers a useful subset of x86 features, but it ignores

non-temporal accesses. This work highlighted deficiencies in the processor architecture

documentation, and Intel released further documents that fixed the problems.

For the sake of performance, the x86 memory model makes some of the details of

internal optimisations visible in the form of out-of-order memory accesses. The memory

model is best understood as a small change to the SC-abstract machine that was presented

in the previous section. Each thread gains a first-in-first-out buffer that temporarily holds

writes from that thread before they are flushed to (and become visible in) shared memory.

There is also a global lock that can be used to coordinate operations that atomically read

and write memory. The abstract machine is as follows:

Thread

Lock

W
rite Buffer

W
rite Buffer

Shared Memory

Thread

Execution is still step based: a thread can read or write, as in the SC abstract machine,

but now the memory subsystem can take a step too — it can flush a write from the end of

one of the threads’ write buffers to memory. When a thread writes, the write is added to

the thread-local write buffer and leaves the memory unaffected. When a thread reads, it

must read the most recent value for the variable present in the thread-local write buffer,

if there is one. Only if there is no such write in the buffer does it read from main memory.

Store buffering on x86 makes behaviours observable that would not have been observ-

able on the SC memory model. Recall the example program from the previous section:

int x = 0;

int y = 0;

x = 1; y = 1;

r1 = y; r2 = x;
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On the SC memory model this program had three possible outcomes for the values of

r1 and r2: 1/1, 0/1, and 1/0. In x86 a new outcome is possible: 0/0. To understand

how, first label the Threads 0, 1 and 2, for the parent, left hand and right hand threads

respectively. The label, t:flush;, will be used to describe when the memory system

flushes a write from the end of a buffer on thread t. All other accesses to memory will be

similarly labeled with the thread that performs them. Now imagine that the x86 abstract

machine executes according to the sequence given in the left hand column of the table

below. There are columns representing the contents of the write buffers on each thread,

and a column representing the contents of memory. Recall that r1 and r2 are just used

to identify the values of reads, so their memory behaviour is elided.

Step Write buffer Memory

Thread 0 Thread 1 Thread 2

0:x = 0; x = 0

0:flush; x=0

0:y = 0; y = 0 x=0

0:flush; x=0, y=0

1:x = 1; x = 1 x=0, y=0

2:y = 1; x = 1 y = 1 x=0, y=0

1:r1 = y; x = 1 y = 1 x=0, y=0

2:r2 = x; x = 1 y = 1 x=0, y=0

1:flush; y = 1 x=1, y=0

2:flush; x=1, y=1

When Thread 1 reads from y into r1, there is no write to y in the write buffer of

Thread 1, so Thread 1 reads from memory. The write of y on Thread 2 has reached its

thread-local write buffer, but has not yet been flushed to memory. Consequently, Thread

1 reads the value 0 from memory. The read of x into r2 takes value 0 symmetrically. This

sequence gives rise to the values r1 = 0 and r2 = 0, an outcome that was impossible

in the sequentially-consistent memory model. This behaviour, called store-buffering, is

produced by keeping the write on each thread in its respective write buffer until the reads

have completed, and only then flushing the writes to memory. This non-SC behaviour

means that x86 is a relaxed memory model.

Note that a read must read its value from the most recent write to the same location

in its thread-local write buffer if one exists, so a thread can read its own writes before

they become visible to other threads.

The consequences of store-buffering The relaxed behaviour allowed by the x86

architecture can make programs that are correct in the SC memory model incorrect. Take

as an example Dekker’s algorithm [47], that provides mutual exclusion between threads
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over a critical section. Although it is not a well-used mutual-exclusion mechanism in

practice, it neatly illustrates the impact of allowing store-buffering relaxed behaviour.

Pseudocode for a version of this algorithm is given below:

1 int flag0 = 0;

2 int flag1 = 0;

3 int turn = 0;

4 flag0 = 1; flag1 = 1;

5 while(flag1 == 1) { while(flag0 == 1) {

6 if (turn == 1) { if (turn == 0) {

7 flag0 = 0; flag1 = 0;

8 while (turn == 1); while (turn == 0);

9 flag0 = 1; flag1 = 1;

} }

} }

. . . critical section . . . . . . critical section . . .

10 turn = 1; turn = 0;

11 flag0 = 0; flag1 = 0;

On an SC memory model, this algorithm provides mutual exclusion. To enter the

critical section, one thread declares that it will try to enter by writing to its flag variable.

It then checks for contention by reading the other thread’s flag variable. If there is no

contention, then it enters the critical section. Otherwise, the thread engages in a turn-

taking protocol, where its flag is written to zero, it waits for its turn, it writes 1 to its flag

and then checks the flag on the other thread. If the other thread is contending, it will

either pass into the critical section and, on exit, relinquish the turn to the other thread,

or be blocked with its flag set to 0, because it is already the other thread’s turn.

On the x86 memory model, relaxed behaviour can cause both threads to enter the

critical section, breaking mutual exclusion. It is the store-buffering relaxed behaviour

that gives rise to this outcome. Recall the shape of the store-buffering litmus test, and

compare it to lines 1, 2, 4 and 5 projected out from the Dekker’s algorithm example above:

int x = 0; int flag0 = 0;

int y = 0; int flag1 = 0;

x = 1; y = 1; flag0 = 1; flag1 = 1;

r1 = y; r2 = x; while(flag1 == 1). . . while(flag0 == 1). . .

Store-buffering allows both threads to write 1 to their own flag, read the other thread’s

flag as 0, and then enter the critical section, breaking mutual exclusion.
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The x86 architecture provides the facility to flush the thread-local store buffer by

adding explicit barriers. In the abstract machine, when a thread encounters an MFENCE

barrier, it must wait until its thread-local write buffer has been emptied before continuing

with the instructions following the MFENCE. If we augment the store-buffering litmus test

with MFENCEs, it becomes:

int x = 0;

int y = 0;

x = 1; y = 1;

MFENCE; MFENCE;

r1 = y; r2 = x;

Now the sequence of steps in the abstract machine that led to the relaxed behaviour is

no longer allowed. The writes to x and y cannot remain in their respective write buffers:

before we perform the read on each thread, we will encounter an MFENCE, and must flush

the write buffer to memory first, making the relaxed behaviour impossible. Inserting

fences into Dekker’s algorithm does indeed reestablish mutual exclusion.

Global lock The x86 semantics has a global lock that can be used to atomically read

and then write a location in memory. This ability is essential for establishing consensus

across multiple threads, and enables us to implement a compare-and-swap primitive in

C/C++11. If any processor has acquired the global lock, then only that processor may

read from memory until it is released, and on release, that processor’s store buffer is

flushed.

2.3 Even more relaxed: Power and ARM

This section describes the Power memory model of Sarkar et al. [98, 96]. It was developed

in close communication with IBM processor architect Williams. The memory model has

been validated by extensive discussion with experts, and by testing on hardware. The

Power and ARM architectures have similar memory models to one another, and each is

more relaxed than that of x86. This section will provide an informal introduction to the

Power model, and some of the relaxed behaviour that can be exhibited by it.

We return to the message-passing litmus test that was introduced in Chapter 1, using

variables x and y for the data and flag, respectively. This test models a programming

idiom where one thread writes some data, here x, then writes to a flag variable, here y.

The other thread checks the flag variable, and if the flag has been written, it expects to

read the data written by the writing thread.

int x = 0;

int y = 0;

x = 1; while (y <> 1){}

y = 1; r = x;
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Executions of this program might read from y any number of times before seeing the

value 1, or they may never see the value 1. We focus on executions where the first read

of y reads the value 1, so we simplify the test to remove the loop:

int x = 0;

int y = 0;

x = 1; r1 = y;

y = 1; r2 = x;

In the sequentially consistent memory model, the behaviour of the program is given

by the set of all interleavings of the memory accesses, as presented in the table below:

Interleaving Outcome

x = 0; y = 0; x = 1; y = 1; r1 = y; r2 = x r1 = 1, r2 = 1

x = 0; y = 0; x = 1; r1 = y; y = 1; r2 = x

r1 = 0, r2 = 1
x = 0; y = 0; r1 = y; x = 1; y = 1; r2 = x

x = 0; y = 0; x = 1; r1 = y; r2 = x; y = 1

x = 0; y = 0; r1 = y; x = 1; r2 = x; y = 1

x = 0; y = 0; r1 = y; r2 = x; x = 1; y = 1 r1 = 0, r2 = 0

Note that the outcome 1/0 is not allowed under sequential consistency or x86 — the

first-in-first-out nature of the write buffers makes it impossible to see the second write

without the first already having flushed to memory. On Power, the relaxed behaviour

could be introduced by any of the following three architectural optimisations:

• The left hand thread’s writes might be committed to memory out of order, by reordering

the stores.

• The right hand thread’s reads might be performed out of order by some speculation

mechanism.

• The memory subsystem might propagate the writes to the other thread out-of-order.

The Power and ARM architectures expose all three sorts of reordering mentioned

above, and produce the result 1/0 on the message-passing example.

The Power and ARM abstract machine Sarkar et al. define the Power and ARM

architecture memory model as an abstract machine. This machine is split between thread-

local details such as speculation, and memory-subsystem details such as write propaga-

tion. Threads can make write, read and barrier requests, and the memory subsystem

can respond with barrier acknowledgements and read responses. Read requests, rather

than containing a simple value, are associated with a particular write that is identified

by a read-response event. Each read-request from a thread results in an immediate read-

response from the storage subsystem.
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Thread
Write request
Read request

Barrier request

 
Read response
Barrier ack

Storage Subsystem

Thread

Each thread is represented by an abstract machine that maintains a tree of all possible

instructions that the thread might perform, with branches in the tree corresponding to

branches in the control flow of the program. Initially, all instructions are marked as in

flight . Instructions are then committed one by one, not necessarily in program order. In-

structions cannot be committed beyond a branch — the branch itself must be committed

first, and the untaken subtree is discarded. Some instructions can be processed before

being committed; this allows the speculation of reads (but not writes) beyond uncommit-

ted control flow branches. The following diagram (taken from the tutorial of Maranget

et al. [71]) shows an instruction tree, with committed instructions boxed.

i12i1 i2 i3 i4 i5

i6

i8

i7

i9

i10

i13

i11

In the message-passing example above (without the while loop), there is no branch

between the read of y and the read of x, so this mechanism can commit the write of x

before the write of y, or the read of x before the read of y, producing the relaxed behaviour

in either case.

Propagation lists For each thread, the abstract machine’s storage subsystem maintains

a list of the writes and barriers that have been propagated to the thread. Intuitively, the

propagation list keeps the set of global events that a thread has observed so far. The

storage subsystem can propagate an event from one thread’s propagation list to another

thread’s list at any time, with some caveats. A thread can also commit a write to its own

propagation list at any time, again with some caveats. Read requests are satisfied with

a write from the thread’s propagation list. The diagram below (taken from the tutorial

of Maranget et al. [71]) depicts these paths of communication between threads and their

propagation lists Memory1 through Memory5 :
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Propagation order is constrained by barriers and coherence (discussed below), but in

the message-passing example there are neither, so the write of x can be propagated to the

other thread before the write of y, permitting the relaxed behaviour.

Coherence The X86, Power and ARM processors are all coherent : the writes to a

single location are globally ordered and all reads of the location must see values that are

consistent with the order. On x86 writes become visible to all threads when they reach

main memory, and the order that writes reach memory orders the writes at each location.

So far, there is no analogous order in the Power model.

To ensure coherence, the storage subsystem of the Power abstract machine keeps a

coherence-commitment order for each location. This is a partial relation that records the

global order in which writes are committed, so that at the end of the execution it will be

total. The order is constructed thread-wise, built up from the order in which writes are

propagated to each thread.

Read requests can be issued by any thread at any time. Reads are requested and

committed separately, and read requests can be invalidated. The propagation list of the

issuing thread, and indirectly, the coherence-commitment order, restrict the write that

the storage subsystem can return for a given read request. The storage subsystem must

return the most recent write of the location in the thread’s propagation order, and the
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coherence-commitment order restricts which writes can be committed to the propagation

list.

Take for example (from Sarkar et al. in PLDI 2011 [98]) an abstract-machine storage

subsystem with the coherence-commitment order as depicted on the left below. Suppose

we are interested in one particular thread that is about to perform a read request, and

w1 is the most recent write to the location of the read in the thread’s propagation list.

The storage subsystem must return the most recent write to the location in the thread’s

propagation list, so the write returned is decided by which writes may be propagated to

the thread before the read request. Consider each of the cases in turn:

w1

w2 w3

w1

w0

w2 w3

w0

1. The coherence-earlier write, w0, cannot be propagated to the read’s thread, so the read

cannot see w0.

2. With no further propagation, the read could see w1.

3. The reading thread could be propagated w2, which would then be seen by the write,

leaving coherence order unchanged.

4. The reading thread could be propagated w3, adding w3 to the propagation list, and

causing it to be seen by the read. This has the effect of adding an edge to the coherence

order from w1 to w3, but leaves w2 and w3 unordered. The updated coherence graph is

on the right above.

Message passing: avoiding relaxed behaviour Now that the Power abstract ma-

chine has been introduced, we return to the message-passing example, and the details of

the machine that can give rise to the relaxed behaviour:

int x = 0;

int y = 0;

x = 1; r1 = y;

y = 1; r2 = x;

The three causes of observing the outcome 1/0 in this program were as follows:

• Writes can be committed out of order.

• Writes can be propagated out of order.

• Reads can be requested out of order.



35

It is easy to imagine programs where the programmer intends to use the message-

passing idiom and the relaxed behaviour would be undesirable, so, much in the same

way that x86 provided the MFENCE, Power and ARM provide additional ordering through

barriers and dependencies . There are three sorts of dependency from a read, r, to another

accesses of memory, a: if the value of r is used to compute the address of the access a

then there is an address dependency, if the value of r is written to memory by a there is

a data dependency, and if the control flow path that leads to a is selected by the value

returned by r then there is a control dependency.

The following program augments the message-passing example, adding an lwsync on

the writing thread, and wrapping the second read within an if-statement with an isync

barrier, that enforces order of the read requests, so that it is dependent on the value read

by the first:

int x = 0;

int y = 0;

x = 1; r1 = y;

lwsync; if (r1 == 1) {

y = 1; isync;

r2 = x; }

Inserting an lwsync barrier between two writes in the Power architecture (or a dmb for

ARM) prevents the writes from being committed or propagated out of order. Similarly,

the control dependency added to the reading thread, combined with the isync barrier,

prevents the reads from being requested out of order. So with these new additions, the

relaxed behaviour is no longer allowed. The Power architecture also provides the sync

barrier that is even stronger than the lwsync or a dependency with isync. With liberal

use of sync, one can regain sequential consistency.

It is interesting to note that when programming such processors, one can rely on

dependencies to provide ordering. It is sufficient to create an artificial dependency that

has no real bearing on the execution of the program — the sort of dependency that a

compiler would routinely remove. This turns out to be a useful programming idiom, and

lies in stark contrast to the treatment of dependencies in programming languages. In the

message-passing example above, we can create an artificial address dependency as follows:

int x = 0;

int y = 0;

x = 1; r1 = y;

lwsync; r2 = *(&x+r1-r1);

y = 1;

This dependency is sufficient to disable the thread-local speculation mechanism, and

ensure the relaxed outcome 1/0 is not visible.
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Multi-copy atomicity Some memory models, like x86 and SC, order all of the writes

in the system by, for example, maintaining a shared memory as part of the state of the

model. Other memory models are weaker and allow different threads to see writes across

the system in different orders. Consider the following example, called IRIW+addrs for

independent reads of independent writes with address dependencies:

int x = 0;

int y = 0;

x = 1; y = 1; r1 = y; r3 = x;

r2 = *(&x+r1-r1); r4 = *(&y+r3-r3);

In this test, there are two writing threads and two reading threads, and the question is

whether the two reading threads can see the writes in different orders; can the values of r1,

r2, r3 and r4 end up being 1/0/1/0? On the Power and ARM architectures, this outcome

would be allowed by the thread-local speculation mechanism if the dependencies were

removed. With the dependencies in place, an unoptimised machine-instruction version of

the test probes whether the Power and ARM storage subsystem requires writes across the

system to be observed in an order that is consistent across all threads, a property called

multi-copy atomicity [3]. Neither Power nor ARM are multi-copy atomic, so the outcome

1/0/1/0 is allowed.

Cumulativity Power and ARM provide additional guarantees that constrain multi-

copy atomicity when dependencies are chained together across multiple threads. Consider

the following example, called ISA2 [71], where the dependency to the read of x is extended

by inserting a write and read to a new location, z, before the read of x. Note that there

is still a chain of dependencies from the read of y to the write of x:

int x = 0;

int y = 0;

x = 1; r1 = y; r2 = z;

lwsync; z = 1+r1-r1; r3 = *(&x+r2-r2);

y = 1;

Here there are loads of y, z and x. The outcome 1/1/0 is not visible on Power and

ARM because the ordering guaranteed by the lwsync is extended through the following

dependency chain. Without the lwsync or the dependencies the relaxed behaviour 1/1/0

would be allowed: the writes on Thread 1 could be committed or propagated out of order,

the instructions of Thread 2 or 3 could be committed out of order, or the writes of Threads

1 and 2 could be propagated out of order to Thread 3. With the addition of the barriers

and dependencies, it is clear that Thread 1 and 2 must commit in order, and that Thread

1 must propagate its writes in order.
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It is not yet obvious that the writes of Thread 1 must be propagated to Thread 3 before

the write of Thread 2, however. A new guarantee called B-cumulativity , provides ordering

through executions with chained dependencies following an lwsync. In this example, B-

cumulativity ensures that the store of x is propagated to Thread 3 before the store of

z.

The example above shows that B-cumulativity extends ordering to the right of an

lwsync, A-cumulativity extends ordering to the left: consider the following example,

called WRC+lwsync+addr for write-to-read causality [37] with an lwsync and an address

dependency. Thread 1 writes x, and Thread 2 writes y:

int x = 0;

int y = 0;

x = 1; r1 = x; r2 = y;

lwsync r3 = *(&x + r2 - r2);

y = 1;

The lwsync and the address dependency prevent thread-local speculation from oc-

curring on Threads 2 and 3, but there is so far nothing to force the write on Thread 1

to propagate to Thread 3 before the write of Thread 2, allowing the outcome 1/1/0 for

the reads of x on Thread 2, y on Thread 3 and x on Thread 3. We define the group A

writes to be those that have propagated to the thread of an lwsync at the point that

it is executed. The write of x is in the group A of the lwsync in the execution of the

program above. A-cumulativity requires group A writes to propagate to all threads before

writes that follow the barrier in program order, guaranteeing that the outcome 1/1/0 is

forbidden on Power and ARM architectures; it provides ordering to dependency chains to

the left of an lwsync.

Note that in either case of cumulativity, if the dependencies were replaced by lwsyncs

or syncs, then the ordering would still be guaranteed.

Load-linked store-conditional The Power and ARM architectures provide load-linked

(LL) and store-conditional (SC) instructions that allow the programmer to load from a

location, and then store only if no other thread accessed the location in the interval

between the two. These instructions allow the programmer to establish consensus as the

global lock did in x86. The load-linked instruction is a load from memory that works in

conjunction with a program-order-later store-conditional. The store-conditional has two

possible outcomes; it can store to memory, or it may fail if the coherence commitment

order is sufficiently unconstrained, allowing future steps of the abstract machine to place

writes before it. On success, load-linked and store-conditional instructions atomically

read and then write a location, and can be used to implement language features like

compare-and-swap.
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Further details of the Power and ARM architectures This brief introduction to

the Power architecture is sufficient for our purposes, but it is far from complete. There

are further details that have not been explained: speculated reads can be invalidated,

for instance. A more complete exploration of the Power memory model and many more

litmus tests can be found in Maranget, Sarkar, and Sewell’s tutorial on the subject [71].

ARM processors allow very similar behaviour to the Power memory model, but ARM

implementations differ in micro-architectural details so that the Power model does not

closely resemble them.

2.4 Compiler optimisations

In addition to the relaxed behaviour allowed by the underlying processors, language mem-

ory models must accomodate relaxed behaviour introduced by optimisations in the com-

piler, and optimisations must be sensitive to the memory model. In this section, we

discuss three interactions of compiler optimisations with the memory model: introducing

reordering by applying a local optimisation, introducing reordering by applying a global

optimisation, and an optimisation that is only allowed in a relaxed memory model.

A local optimisation Consider the following example of a thread-local optimisation.

A function f, on the left below, writes to a memory location pointed to by b regardless

of the value of a. The compiler should be free to optimise this to the code on the right

that simply writes, without the conditional.

void f(int a, int* b) {

if (a == 1)

*b = 1;

else

*b = 1;

}

void f(int a, int* b) {

*b = 1;

}

It is interesting to note that in the unoptimised code, the store to the location of b

appeared, at least syntactically, to depend on the value a. In the analogous program

on the Power or ARM architecture, this would have constituted a control dependency

that would have created ordering between memory accesses. Compiler optimisations may

remove these dependencies, so the language cannot provide the same guarantees. This

optimisation has been observed when compiling with Clang and GCC.

A global optimisation The following is an example of value-range analysis: an opti-

misation that uses global information across threads. The original program on the left
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only writes values 0 and 1 to x, so the compiler might reason that the write to y will al-

ways execute, transforming the code to that on the right, and again breaking a syntactic

dependency:

int x = 0;

int y = 0;

x = 1; if (x < 2);

y = 1;

int x = 0;

int y = 0;

x = 1; y = 1;

A memory-model-aware optimisation In the relaxed setting, we can optimise in

new ways because more executions are allowed. Recall the message-passing example from

the previous section:

int data = 0;

int flag = 0;

data = 1; while (flag <> 1);

flag = 1; r = data;

The Power memory model allows this program to terminate with the final value 0 for

data. This is because the processor might commit or propagate the writes on the left

hand thread out of order. An optimising compiler targeting the Power memory model

could optimise more aggressively than under SC: it could reorder the writes on the left

hand thread while preserving the semantics of the program. A compiler for such a relaxed

system need only check whether there is any thread-local reason that ordering should be

preserved, and if not, it can reorder. This example demonstrates that under a relaxed

memory model, more agressive optimisation is possible than under SC.

2.5 The C++11 memory model design

In this chapter we reviewed the memory models of the x86 and Power/ARM architectures.

These, together with Itanium and MIPS, are the most common target architectures for

the C/C++11 language, and the language is tuned to match x86, Power and Itanium.

The processor architectures are relaxed: x86 allows store buffering and Power and ARM

allow a range of behaviours. The C/C++11 memory model is intended to provide a low

level interface to relaxed hardware, so for the highest performance, it must be at least

as relaxed as the plain memory accesses of each supported architecture. The relaxed

behaviours allowed by these systems include buffering of stores, speculation of reads and

violations of multi-copy atomicity.

At the same time, there are properties that hold in each target architecture that the

language can provide without a need for the compiler to insert explicit synchronisation;
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they can be guaranteed with no degradation to performance. These properties include

atomicity of accesses, coherence of the writes at a single location, atomicity of a compare-

and-swap through either locked instructions (x86) or load-linked store-conditionals (Pow-

er/ARM), and ordering provided by dependencies in the program (note that dependencies

are not always preserved in an optimising compiler). Chapter 5 describes outstanding

problems with the C/C++11 treatment of dependencies.

When barriers are inserted, there are further properties that the language can take

advantage of: in particular, on Power/ARM the barriers are cumulative. The design of

the language features should map well to the sorts of barriers that the targets provide: if

the specification of a language feature does not provide much ordering, but its underlying

implementation is expensive and provides stronger guarantees, then the feature is poorly

designed.

2.5.1 Compiler mappings

The concurrent C/C++11 features are syntactically provided as a library: the program-

mer is given atomic types and atomic accessor functions that read and write to memory.

The previous chapter listed the load, store and atomic-exchange functions over atomic

types, and enumerated the choices for the memory-order parameter of each. Each acces-

sor function, when combined with a particular memory order, introduces a well-specified

amount of ordering in the execution of the program, as described by the memory model.

This ordering is ensured both by restricting optimisations on the compiler, and by insert-

ing explicit synchronisation during code generation for a given architecture.

Throughout the design phase of the memory model, there were tables mapping the

atomic accessor functions to their expected machine-instruction implementations on var-

ious target architectures: x86 [107], Power [78], ARM [106]. These tables relate to the

relative cost of the primitives and help to understand the least-common ordering provided

by each. The table below shows an implementation of the C++11 primitives with various

choices of memory order over the x86, Power, ARM and Itanium architectures. The table

below includes refinements and extensions to the early design-phase mappings.

C/C++11 X86 Power ARM Itanium

load relaxed MOV (from memory) ld ldr ld.acq

load consume MOV (from memory) ld + keep dependencies ldr + keep dependencies ld.acq

load acquire MOV (from memory) ld; cmp; bc; isync ldr; teq; beq; isb ld.acq

load seq cst MOV (from memory) hwsync; ld; cmp; bc; isync ldr; dmb ld.acq

store relaxed MOV (into memory) st str st.rel

store release MOV (into memory) lwsync; st dmb; str st.rel

store seq cst MOV (into memory), MFENCE hwsync; st dmb; str; dmb st.rel; mf

fence acquire ⟨ignore⟩ lwsync dmb ⟨ignore⟩

fence release ⟨ignore⟩ lwsync dmb ⟨ignore⟩

fence acq rel ⟨ignore⟩ lwsync dmb ⟨ignore⟩

fence seq cst MFENCE hwsync dmb mf

Note that the table provides the same implementation for atomic loads on x86 regard-

less of the memory order they are given. If C++11 targeted only x86, then it would be
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poorly designed: programmers would be given access to many complicated features that

provide few guarantees, while their programs would execute according to a much stronger

implicit memory model. The Power and ARM architectures justify the more relaxed fea-

tures of the model: the relaxed load maps to a plain load on each, for instance, while the

others are more complex. Chapter 7 describes a proof that the x86 and Power mappings

correctly implement C/C++11.

2.5.2 Top-level structure of the memory model

This section introduces the top-level structure of the C/C++11 memory model as defined

by the standard. We presented the memory models of key processor architectures. These

models are expressed as abstract machines: one should imagine them ticking through the

execution of the program step-by-step, filling buffers, propagating writes, and so on. The

C/C++11 memory model is rather different: it is an axiomatic memory model. Axiomatic

models do not execute stepwise, instead they judge whether particular whole executions

are allowed or not. The model forms its judgement over execution graphs, whose vertices

are memory accesses, and whose labeled edges represent relationships such as program

order. The most important sort of edge is the happens-before relation, but there are

other relations that describe intuitive concepts: for example, the relation lo is a union of

relations, where each totally orders all of the accesses to a particular mutex in memory.

At the top level, the memory model is a function from a program to either a set of

executions or undefined behaviour. The behaviour of a program is defined by both a

thread-local semantics and the memory model. Each execution is made up of two parts:

there is a component that represents the syntactic structure of a particular path of control

flow through the program, generated by the thread-local semantics, and another that

represents the execution’s dynamic interaction with memory, as allowed by the memory

model. At the top level, the definition of the behaviour of a program according to the

memory model is defined by the following steps:

1. The thread-local semantics generates the set of all executions whose memory accesses

match those of a particular path of control flow through the program. The values

read from memory are constrained only by the satisfaction of conditions in control-flow

statements, so this set is large.

2. The set of executions is then pared down to the consistent executions: those whose

read values correspond to memory behaviour allowed by the memory model.

3. Finally, if the set of filtered executions contains an execution with a cause of undefined

behaviour (such as a data race), then the behaviour of the whole program is undefined.

Otherwise, the filtered set of executions from 2 are the behaviours of the program.

The memory model’s executions are an abstraction of the program’s interaction with

memory. Memory reads, writes, locks, unlocks and fences, are modeled by actions —
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indivisible events that affect the memory. Executions impose no total order over mem-

ory actions. In particular there is no time ordering and no total sequentially-consistent

ordering. Instead there are multiple partial relations that describe constraints present in

the program, the sources of observed values, and the order of actions in memory. The

behaviour of a program is largely decided by the partial happens-before relation, that can

be thought of as a proxy for a total temporal order. Happens-before collects together

syntactic constraints and dynamically induced inter-thread synchronisation. It is acyclic,

but as we shall see, in its most general form it is partial and not transitive.

Reads and writes to memory can be either atomic or non-atomic. Non-atomic reads

and writes are regular accesses of memory. They can give rise to data races , when happens-

before does not sufficiently order actions on different threads. Data races are one of several

causes of undefined behaviour: a program with even a single execution that contains a data

race is allowed to do anything. Undefined behaviour is to be avoided, and in C/C++11

preventing the causes of undefined behaviour is left the responsibility of the programmer.

Races between atomic reads and writes do not produce undefined behaviour (races

between non-atomics and atomics do), so atomics can be used to build racy data structures

and algorithms that have well-defined behaviour. Together with locks and fences, atomic

actions produce inter-thread synchronisation that contributes to happens-before. The

programmer should use the atomics to create enough happens-before ordering in their

program to avoid data races with non-atomic accesses.

In the most general case, happens-before is a complicated relation over actions, built

from various constituent relations that are carefully combined to provide just the right

amount of ordering through dependencies. Among the constituents are sequenced-before

(sb) and synchronises-with (sw). Sequenced-before is a relation over actions, iden-

tified by the thread-local semantics, that corresponds to thread-local program order.

The synchronises-with relation captures dynamically-created inter-thread synchronisa-

tion. Thread creation, locks and atomic accesses can create synchronises-with edges. For

the purpose of explaining the following programming idioms, it is sufficient to think of

happens-before as the transitive closure of the union of sequenced-before and synchronises-

with.

2.5.3 Supported programming idioms

The various memory orders provided by C/C++11 are intended to support a variety of

programming idioms. In this section we discuss the key ones, explain the intuition behind

their treatment in the C/C++11 memory model, and the architectural justification for

their correctness.

Concurrent programming with locks The language is intended to support concur-

rent programming with locks. In the following example, the program on the left is written
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in C++11-like pseudocode. For clarity, layout and parallel composition are used instead

of the more verbose thread-creation syntax of the language. Otherwise, the keywords are

faithful to C++11.

In our first example, a parent thread creates an integer x and a mutex m and then

spawns two threads, each of which lock the mutex, access x and then unlock the mutex.

On the right, there is an execution of this program. The execution is a graph over memory

accesses (we elide the accesses from the parent thread, and accesses to thread-local r1).

Each access is written in a concise form: first there is a unique action identifier, then a

colon, a letter indicating whether the access is a read (R), a write (W), an unlock (U) or a

lock (L), then, reads and writes are followed by a memory order (NA indicating non-atomic

below), a location and a value, unlocks are followed by a location and locks are followed

by a location and an outcome (locked or blocked). Accesses from the same thread are

printed vertically, and program order is captured by the sequenced-before relation, labeled

sb below, between them. The lo and sw relations will be explained below.

int x = 0;

mutex m;

m.lock(); m.lock();

x = 1; r1 = x;

m.unlock(); m.unlock();

d:L m Locked

e:WNA x=1

l:U m

i:L m Locked

j:RNA x=1

g:U m

sb

sb
lo,sw

sb

sb

lolo

This program uses mutexes to protect the non-atomic accesses and avoid data races.

The C/C++11 memory model places all of the accesses to a particular mutex in a total

order called lock order , labeled lo above. The lock and unlock actions that bound locked

regions of code must agree with this order, and there is a locking discipline required of

programmers: they must not lock a mutex twice without unlocking it, or unlock twice

without locking it. (see Chapter 3 for details). Unlocks and locks to the same location

create synchronisation, in particular lock-order-earlier unlocks synchronise with lock-order

later locks.

The execution shows a particular lock order, marked lo, and the synchronises-with

edge, marked sw, that it generates. Together with sequenced-before, this edge means that

the store and load to x are ordered by happens-before, and this execution does not have

a data race.

Mutexes can be used to write concurrent programs without data races. The imple-

mentation of locks and unlocks on the target architectures are expensive, so programs

that require higher performance should use the atomic accesses.

Message passing C/C++11 efficiently supports the message-passing programming id-

iom on all target architectures. The programmer can use atomic release writes and atomic

acquire loads to perform racy accesses of the flag variable (y below) without leading to
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undefined behaviour. In the program on the left below, the parent thread initialises some

non-atomic data x and an atomic y. The child threads then attempt to use y as a flag in

the message-passing idiom. The execution on the right represents the outcome where the

read of y read from the write in the left-hand thread on the first iteration of the while

loop. The edge labeled rf is the reads-from relation, that relates writes to the reads that

take their values.

int x = 0;

atomic int y = 0;

x = 1; while (y.load(acquire) <> 1);

y.store(1,release); r1 = x;
d:WREL y=1 f:RNA x=1

c:WNA x=1 e:RACQ y=1

sb sb
rf

rf,sw

This program involves non-atomic accesses to x from both threads, but the release

and acquire atomics create synchronisation where the acquire reads from the release,

so the while loop ensures that there will always be a happens-before edge between the

two non-atomic memory accesses, and the program is not racy. Moreover, the memory

model states that non-atomic loads from memory must read from the most recent write

in happens-before, so we cannot read the initialisation of x on the right-hand thread.

Note that the compilation mappings above preserve this behaviour on the hardware

when the program is translated. On x86, the stores and loads in the program are translated

to MOV instructions. The first-in-first-out nature of the architecture’s write buffers ensures

that if we see the write of y on the left hand thread, then we will see the write of x. In

general, on Power, this is not the case, but the mapping inserts barrier instructions that

ensure the correct behaviour. The following pseudocode represents the Power translation

with inserted barriers, removing the while loop for clarity:

int x = 0;

int y = 0;

x = 1; r = y;

lwsync; cmp;bc;isync;

y = 1; r1 = 1;

The barriers on the right-hand thread act as a control dependency followed by an

isync barrier. The previous section explained that this is sufficient to disable the Power

speculation mechanism, and combined with the lwsync, that prevents out-of-order com-

mitment or propagation of the writes, these barriers ensure correct behaviour.

The language supports several variants of the message passing programming idiom.

One can use separate fences with relaxed atomics instead of the release and acquire

annotated atomics — using fences, the cost of synchronisation need not be incurred on

every iteration of the loop in the example above, but instead only once, after the loop.



45

Variants of the message passing test above with an address dependency between the loads

on the right hand thread can use the consume memory order rather than acquire, resulting

in a data-race-free program with no costly barrier insertion on the read thread on Power

and ARM hardware.

Racy sequential consistency The third programming idiom that C/C++11 is in-

tended to support is sequential consistency. Programmers who require SC can use atomic

accesses with the seq cst memory order. The memory model places all seq cst atomics

in a total order called SC order . Reads in SC order must read the immediately preceding

write at the same location. Race-free programs that use only the seq cst memory order

for shared accesses forbid all relaxed behaviour and have SC semantics, and we can use

this fragment of the language to write code that relies on SC behaviour.

In Section 2.2, we showed that it is store-buffering relaxed behaviour that causes a

naive fence-free implementation of Dekker’s to violate mutual exclusion on x86 hardware.

We can use the seq cst atomics to write programs like Dekker’s algorithm.

To understand the memory model’s treatment of seq cst atomics, we return to the

store-buffering example, with all accesses made seq cst atomic.

atomic int x = 0;

atomic int y = 0;

x.store(1,seq cst); y.store(1,seq cst);

r1 = y.load(seq cst); r2 = x.load(seq cst);
d:RSC y=1 f:RSC x=1

e:WSC y=1c:WSC x=1

sb sb

sc

sc

rf,scrf

If the outcome 0/0 can be observed, then this test admits the store-buffering relaxed

behaviour, and the behaviour of the program is not SC. The execution on the right shows

the SC order for the two child threads. Because of the thread-local order of the accesses,

the final action in SC order must be one of the loads on the child thread, and the write

on the other thread must precede it in SC order. According to the model, the load may

not read the initialisation write that happens before this SC write, so it is not possible

for this program to exhibit the 0/0 outcome.

The compilation mappings place an MFENCE after the seq cst stores on x86, an hwsync

before loads on Power, and a dmb after stores on ARM. In each case there is a strong barrier

between the accesses on each thread in the store-buffering test:

int x = 0;

int y = 0;

x = 1; y = 1;

MFENCE/hwsync/dmb; MFENCE/hwsync/dmb;

r1 = y; r2 = x;
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On each architecture, this is sufficient to disallow the relaxed behaviour. Section 2.2

discusses the architectural intuition behind this for x86. On Power and ARM, the relaxed

outcome is allowed without the barriers because the stores and loads can be committed

out of order, or the loads can be committed before the stores are propagated. The barriers

disable these optimisations on each target.

2.5.4 Standard development process

The standards of the C and C++ languages are developed by ISO SC22 working groups

21 and 14 respectively. The membership of each workgroup comprises a mix of industrial

members from various companies and countries.

The language is mutated over time through an evolutionary process that involves

collecting proposed amendments to a working draft of the standard, and periodically

voting to apply them to the draft on a case-by-case basis. The drafts are prepared with

a deadline for ratification in mind, although in the case of C++11, called C++0x in

development, this turned out to be flexible. Prior to ratification, the committee stabilises

the working draft and declares it to be a “Final Committee Draft”, which can then

be ratified by the working group, subject to the outcome of a vote. After ratification

the working group can publish corrigenda that become part of the specification. These

corrigenda are used to make clarifications and sometimes to fix errors.

The working groups record reports containing comments, potential amendments, hy-

pothetical ideas and working drafts in a stream of enumerated documents, called collo-

quially N-papers. The process is admirably open: there is a public archive of N-papers

that one can browse by date [55]. The ability to present a publicly visible document that

is registered as officially submitted to the language designers is invaluable for academic

collaboration.

In my case, interaction with the standardisation committee took place in two modes.

The first was informal email exchange. The committee are open to contact from external

experts, and have mailing lists on which language issues are discussed. This informal

contact was invaluable for the early development of the formal model. The other mode

of contact was through a process of official report and face-to-face advocacy at WG21

meetings in the lead up to the release of the standard. In earlier stages, issues can be

raised for discussion by submitting the issue by email to one of the subgroup chairs, or

by submitting an N-paper. In the later stages of the standardisation process, a member

of a national delegation must submit a formal comment to allow discussion of an issue.

Such comments often refer to an N-paper that describes the issue in detail.

The main working group is large, and the meetings I went to had a high enough

attendance that it would have been difficult to discuss contentious technical issues among

all attendees. Usefully, WG21 had a concurrency subgroup, attended by a small number

of well-informed experts.
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C++11 was to be the first major revision of the language since its initial standardi-

sation in 1998 [4] (C++03 [5] was a minor update, and the 2007 revision was merely a

technical report [6], rather than a full international standard). Development of the atomics

library seems to have started in 2007 [34], and my involvement began in 2009 [20]. I at-

tended meetings of working group 21 in Rapperswil, Switzerland in August 2010, Batavia,

Illinois (USA) in November 2010, and Madrid, Spain in March 2011. My comments and

suggestions were incorporated into the August 2010 national body comments [51] on the

final draft of C++11. The finalised standard was ratified in September 2011 [30].

Chapter 5 describes concrete issues with the language specification, some of which

were fixed in amendments to drafts before ratification, some of which became part of a

corrigendum, and some of which have not been addressed. Each issue references the N-

papers that described the issue to the standardisation committee and those that suggested

amendments to drafts.
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Chapter 3

The formal C/C++ memory model

This chapter describes a mechanised formal definition of the C/C++11 memory model,

following the C++11 standard (Appendix A establishes a close link to the text). The

formal model was developed in discussion with the C++11 standardisation committee

during the drafting phases of the C++11 standard. This process brought to light several

major errors in drafts of the standard and led to solutions that were incorporated in the

ratified standards (Chapter 5 discusses these changes, together with remaining issues).

The close contact with the standardisation committee, the link to the standard text and

the fact that this model fed changes to the standard establish it as an authoritative

representation of the C++11 memory model. C11 adopts the same memory model as

C++11 for compatibility, so the model presented here applies to C as well.

The formal model relies on several simplifications. Details like alignment, bit repre-

sentation, and trap values are ignored, we assume variables are aligned and disjoint, signal

handlers are not modeled and neither is undefined behaviour introduced thread-locally:

e.g. division by zero, out-of-bound array accesses. We do not consider mixed size accesses

or allocation and deallocation of memory: both would require a memory-layout model

that is omitted for simplicity.

The memory model is introduced in stages, as a sequence of derivative models that

apply to successively more complete sublanguages of C/C++11. The mathematics that

describe the models is automatically typeset from the source, written in the Lem specifi-

cation language [90] (the full set of definitions are reproduced in Appendix C). The first

section introduces a cut-down version of the C/C++11 memory model that describes the

behaviour of straightforward single-threaded programs, and in doing so, introduces the

underlying types and top-level structure of the memory model that will apply to the rest

of the models in the chapter. This introductory section is followed by a series of for-

mal memory models that incrementally introduce concurrency features, together with the

mathematics that describe how they behave, and the underlying architectural intuitions

related to them. The chapter culminates in the presentation of the full formal model of

C/C++11 concurrency as defined by the ISO standard. The following table displays the

49
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sublanguages and the related parts of the model that each section introduces:

Section sublanguage elements of model introduced

§3.1 single threaded (no locks, no atomics, no

fences)

top-level model structure, sequenced-before

§3.2 concurrent with locks lock-order, synchronises-with, data races

§3.3 concurrent with relaxed atomics and locks atomics, modification order, coherence, CAS

§3.4 concurrent with release and acquire atomics

and locks (no relaxed atomics)

release-acquire synchronisation

§3.5 release, acquire and relaxed atomics and locks release sequences

§3.6 all of the above plus release and acquire fences hypothetical release sequences

§3.7 all of the above plus SC atomics SC-order

§3.8 all of the above plus SC fences SC fence restrictions

§3.9 all of the above plus consume atomics (locks,

all atomics, all fences)

data-dependence, carries-a-dependency-to,

dependency-ordered-before

§3.10 locks, all atomics, all fences visible-sequences-of-side-effects

3.1 Top-level structure by example: single-threaded programs

Before introducing the memory model that governs simple single-threaded programs, it is

necessary to formally define the top-level structure and underlying types of the memory

model. We start with the type of actions.

Memory actions Reads and writes to memory, locks, unlocks and fences are modelled

by memory events called actions. The action type is given below. Each action has a

unique action-identifier, of type aid, and a thread identifier, of type tid, identifying its

host thread.

type action =

| Lock of aid ∗ tid ∗ location ∗ lock outcome

| Unlock of aid ∗ tid ∗ location

| Load of aid ∗ tid ∗ memory order ∗ location ∗ cvalue

| Store of aid ∗ tid ∗ memory order ∗ location ∗ cvalue

| RMW of aid ∗ tid ∗ memory order ∗ location ∗ cvalue ∗ cvalue

| Fence of aid ∗ tid ∗ memory order

| Blocked rmw of aid ∗ tid ∗ location

Locks have an outcome and can either leave the mutex Locked or Blocked:

type lock outcome =

Locked

| Blocked
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Loads and stores both have an associated value, that is read or written respectively. A

read-modify-write action is the result of a successful compare-and-swap, atomic increment,

atomic add, or similar call. It has two values: first is the value read, and the second the

value written. A Blocked rmw action is generated when one of these calls permanently

blocks (e.g. from a non-terminating load-linked/store-conditional loop).

The memory order of an action, defined below, specifies the strength of ordering that

an action generates in an execution. Actions annotated with NA are regular non-atomic

C/C++ memory accesses, whereas the other memory orders are part of the new low-level

atomic library. The precise details of the interaction of memory orders are discussed in

the coming sections.

type memory order =

| NA

| Seq cst

| Relaxed

| Release

| Acquire

| Consume

| Acq rel

Actions that read from or write to memory specify a location: the abstract location

in memory that the action accesses. Locations can be one of three kinds: non-atomic,

atomic and mutex. Only non-atomic actions can act at non-atomic locations. Similarly,

only locks and unlocks can act at mutex locations. Atomic locations are accessed by

atomic reads and writes, but their initialisation is non-atomic. C/C++11 requires the

programmer to use synchronisation to avoid data races on the initialisation of atomic

locations. This design decision allows compilers to implement atomic initialisations with-

out emitting additional synchronisation on the target processor. Location-kind is defined

below.

type location kind =

Mutex

| Non Atomic

| Atomic

The memory model described in the rest of this section applies to programs that have

only a single thread and do not use any of the concurrency features of the language. The

only memory accesses that such programs can produce are non-atomic loads and stores

of memory. Take for example, the following program:
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int main() {

int x = 2;

int y = 0;

y = (x==x);

return 0; }

Executions of this program have two non-atomic store actions corresponding to the

initialisation of x and y, two non-atomic load actions corresponding to the two reads of x

in the comparison, and a write of the result to y in a final non-atomic store action.

The behaviour of the program is represented by a set of executions . Each execution

is a graph whose vertices are memory actions, and whose edges represent syntactically

imposed constraints or dynamic memory behaviour. For single-threaded programs, the

only important syntactically imposed constraint is sequenced-before (sb). Sequenced-

before captures the program order of the source program. In C and C++ this is a partial

relation over the actions on a particular thread — the ordering is partial to provide

compilers flexibility in their order of evaluation.

Returning to the previous example, we present its execution (this example has only

one that satisfies the model) on the right below. The vertices of the graph are the memory

actions; each has a label, an R or W, representing a read or write respectively, a subscript

that identifies the memory order of the access, then a location, an equals sign and a value.

The labeled directed edges correspond to the sequenced-before relation. Observe that it

is not total: the two loads in the operands of the == operator are unordered. Sequenced

before is transitive, but for clarity we draw only its transitive kernel.

int main() {

int x = 2;

int y = 0;

y = (x==x);

return 0; }

e:WNA y=1

a:WNA x=2

b:WNA y=0

c:RNA x=2 d:RNA x=2

sb

sb sb

sb

sb

Pre-execution For a given path of control flow through a program, we define a pre-

execution as a record containing a set of uniquely identified actions that represent the

program’s accesses of memory, a set of thread identifiers, a map from locations to location

kinds, and relations representing the constraints imposed by the syntactic structure of the

program. Three relations track syntactic constraints: sequenced-before (sb) is the thread-

local program order, data-dependence (dd) represents data and address dependencies, and
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additional-synchronises-with (asw) captures parent to child ordering on thread creation.

The pre-execution type is then:

type pre execution =

⟨| actions : set (action);

threads : set (tid);

lk : location → location kind;

sb : set (action ∗ action) ;

asw : set (action ∗ action) ;

dd : set (action ∗ action) ;

|⟩

For each program, a set of pre-executions represents each path of control flow, with

the values of accesses that read from memory constrained only by the values that are

required to satisfy conditionals in the control-flow path of the pre-execution. This set

is calculated from the program source code. For example, the following program gives

rise to pre-executions including the three on the right below. Note the unexpected read

values; they are unconstrained in a pre-execution.

int main() {

int x = 0;

r1 = x;

x = 1;

return 0; }

a:WNA x=0

b:RNA x=1

c:WNA x=1

sb

sb

a:WNA x=0

b:RNA x=42

c:WNA x=1

sb

sb
a:WNA x=0

b:RNA x=0

c:WNA x=1

sb

sb

If-statements produce a set of pre-executions for each possible branch, so the set of

pre-executions of the following program contains both of the pre-executions below.

int main() {

int x = 0;

if (x == 3)

x = 1;

else

x = 2;

return 0; }

a:WNA x=0

c:RNA x=3

d:WNA x=1

sb

sb
a:WNA x=0

c:RNA x=5

d:WNA x=2

sb

sb

While loops produce a set of pre-executions for each possible unrolling of the loop.

Three pre-executions (printed side-by-side) of the program are shown below:
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int main() {

int x = 0;

while (x == 0)

x = 1;

return 0; }
a:WNA x=0

c:RNA x=8

sb

a:WNA x=0

b:RNA x=0

c:WNA x=1

e:RNA x=6

sb

sb

sb

a:WNA x=0

b:RNA x=0

c:WNA x=1

e:RNA x=0

f:WNA x=1

h:RNA x=2

sb

sb

sb

sb

sb

Thread-local semantics A thread-local semantics is a function from the source code

of a program to a set of pre-executions that represent possible executions of each path

of control flow. We leave the thread-local semantics as a parameter to the concurrency

model in order to escape modelling the whole of the language. Chapter 4 introduces a

tool that calculates the executions of small C/C++11 programs. This tool contains a

thread-local semantics, expressed in OCaml, for a small subset of the C++11 language.

Ideally one would have a formal interpretation of the thread-local semantics defined by

the C and C++ standards. The type of the thread-local semantics is:

type opsem t = program → pre execution → bool

3.1.1 The execution witness, calculated relations and candidate executions

The memory model represents the behaviour of the program as a set of complete ex-

ecutions. The type of each of these is made up of three components: a pre-execution

as described above, an execution witness, made up of more relations, that describes the

dynamic behaviour of memory, and a set of calculated relations.

Execution witness The execution witness is defined as record containing the following

relations over memory actions: reads-from (rf) relates writes to each read that reads from

them, modification order (mo) is a per-location total order over all the writes at each

atomic location, SC-order (sc) is a total order over all actions with the seq cst memory

order, lock order (lo) is a per-location total order over all the mutex actions, and total

memory order (tot) is a total order over all memory actions that is used in Chapter 6. The

memory models in the following sections will each use a selection of these relations. In

the single-threaded model, we use only the reads-from relation. The type of the execution

witness is:

type execution witness =

⟨| rf : set (action ∗ action);
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mo : set (action ∗ action);

sc : set (action ∗ action);

lo : set (action ∗ action);

tot : set (action ∗ action);

|⟩

The reads-from (rf) relation relates stores to the load actions that take their values.

Returning to the example from the previous section, we show the pre-execution together

with a reads-from relation, with directed edges labeled rf:

int main() {

int x = 2;

int y = 0;

y = (x==x);

return 0; }

b:WNA y=0

c:RNA x=2 d:RNA x=2

e:WNA y=1

a:WNA x=2
rf

rf

sb sb

sb sb

sb

The memory model will decide which execution witnesses represent behaviour that is

allowed for a given pre-execution. The model enumerates all possible execution witnesses

and then filters them. Some of the enumerated witnesses will not correspond to allowable

behaviour. For instance, the following three candidate executions (printed side-by-side)

are some of those enumerated for the program on the right. Not all candidate executions

will be allowed by the memory model. We adopt the convention of eliding accesses to

variables named “r” followed by a number, and use them only to capture values read from

memory and to construct dependencies.

int main() {

int x = 0;

r1 = x;

x = 1;

return 0; }

c:WNA x=1

a:WNA x=0

b:RNA x=1

sb

sb rf

a:WNA x=0

b:RNA x=42

c:WNA x=1

sb

sb
a:WNA x=0

b:RNA x=0

c:WNA x=1

sb,rf

sb

Calculated relations Given a pre-execution and an execution witness, the memory

model defines a set of derived relations that collect together multiple sources of ordering,

and represent higher-level concepts. The single-threaded model only has two calculated

relations: happens-before (hb) and visible side effect (vse). As discussed in Chapter 2,

happens-before is intended to serve as an intuitive ordering over the actions of the exe-

cution. In later models happens-before will include inter-thread synchronisation, but in

the single-threaded model, happens-before is equal to sequenced-before. The visible side
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effects of a particular read are all of the writes at the same location that happen before

it, such that there is no happens-before-intervening write to the same location; these are

the writes that the read may legitimately read from. In simple cases this set will be a

singleton, but because sequenced-before is partial, it may not be. The model represents

visible side effects as a relation from each visible side effect to its corresponding read. The

relation is expressed formally as a set comprehension:

let visible side effect set actions hb =

{ (a, b) | ∀ (a, b) ∈ hb |

is write a ∧ is read b ∧ (loc of a = loc of b) ∧

¬ ( ∃ c ∈ actions . ¬ (c ∈ {a, b}) ∧

is write c ∧ (loc of c = loc of b) ∧

(a, c) ∈ hb ∧ (c, b) ∈ hb) }

Returning to the example program, the following shows the happens-before and visible-

side-effect relations of a candidate execution, but elides all others.

int main() {

int x = 0;

int y = 0;

y = (x==x);

return 0; }

b:WNA y=0

c:RNA x=0 d:RNA x=0

e:WNA y=1

a:WNA x=0
vse

hb

hb hb

hb hb

vse

Each memory model collects these relations in a list of named calculated relations:

type relation list = list (string ∗ set (action ∗ action))

Candidate executions Together, a pre-execution, an execution witness and a list of

calculated relations form a candidate execution of the program:

type candidate execution = (pre execution ∗ execution witness ∗

relation list)

In summary, the first step in working out the behaviour of a program is to find all pre-

executions that agree with the source program, according to the thread-local semantics.

For each pre-execution, we then find all possible execution witnesses, and for each pair

of pre-execution and associated execution witness, we link this with a set of calculated

relations. This gives us a large set of candidate executions that the rest of the memory

model will constrain.
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3.1.2 The consistency predicate

The behaviour of a program, whether defined or undefined, is decided by the set of

all candidate executions that satisfy the consistency predicate of the memory model: a

conjunction of predicates that restrict what sort of dynamic behaviour of memory is

allowed in an execution. This section walks through the conjuncts of the consistency

predicate that applies to single-threaded programs.

Well-formed threads One conjunct of the consistency predicate is present for ev-

ery memory model: the well formed threads predicate encodes properties of the set of

pre-executions that the thread-local semantics must satisfy. The predicate is itself a

conjunction of predicates, each of which is presented here.

All load, store, read-modify-write and fence actions in the pre-execution must be

annotated with an appropriate memory order: it would be a programmer error to annotate

an atomic load with the release memory order, for instance:

let well formed action a =

match a with

| Load mo → mo ∈ {NA, Relaxed, Acquire, Seq cst, Consume}

| Store mo → mo ∈ {NA, Relaxed, Release, Seq cst}

| RMW mo → mo ∈ {Relaxed, Release, Acquire, Acq rel, Seq cst}

| Fence mo → mo ∈ {Relaxed, Release, Acquire, Acq rel, Consume, Seq cst}

| → true

end

Each action must act on an appropriate location type: locks and unlocks act on mutex

locations, non-atomic actions act on non-atomic locations or atomic locations, and atomic

actions act on atomic locations. Note that in C++11, non-atomic reads cannot act on

atomic locations, but in C11 they can. The formal model applies to C as well, but we

follow the C++ restriction here.

let actions respect location kinds actions lk =

∀ a ∈ actions . match a with

| Lock l → lk l = Mutex

| Unlock l → lk l = Mutex

| Load mo l →

(mo = NA ∧ lk l = Non Atomic) ∨ (mo ̸= NA ∧ lk l = Atomic)

| Store mo l →

(mo = NA ∧ lk l = Non Atomic) ∨ lk l = Atomic

| RMW l → lk l = Atomic

| Fence → true
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| Blocked rmw l → lk l = Atomic

end

Some actions block forever, and the thread-local semantics must generate pre-

executions in which permanently blocked actions have no successors in sequenced-before

on the same thread:

let blocking observed actions sb =

(∀ a ∈ actions .

(is blocked rmw a ∨ is blocked lock a)

−→

¬ (∃ b ∈ actions . (a, b) ∈ sb))

The standard says that functions are ordered with respect to all other actions on the

same thread by sequenced-before, whether or not an order is imposed by the syntax of

the program; their sequencing is described as indeterminate (see Appendix A for the

rationale). All memory accesses on atomic and mutex locations are the result of calls to

library functions, and as a consequence, they are ordered with respect to all other actions

on the same thread by sequenced before. This property is captured by the following

conjunct of the well-formed-threads predicate:

let indeterminate sequencing Xo =

∀ a ∈ Xo.actions b ∈ Xo.actions .

(tid of a = tid of b) ∧ (a ̸= b) ∧

¬ (is at non atomic location Xo.lk a ∧ is at non atomic location Xo.lk b) −→

(a, b) ∈ Xo.sb ∨ (b, a) ∈ Xo.sb

We do not model the creation and joining of threads explicitly. Instead, the thread-

local semantics provides us with the additional synchronises-with relation, that captures

parent-to-child thread creation ordering. The calculated relation sbasw is the transitive

closure of the union of sb and asw. This relation captures program order and the inter-

thread ordering induced by creating and joining threads. We require this relation to be

acyclic.

let sbasw Xo = transitiveClosure (Xo.sb ∪ Xo.asw)

In addition to the requirements above, well formed threads predicate provides the fol-

lowing guarantees: all actions have a unique identifier (we require the projection of the

action identifier to be injective), the sb and asw relations only relate actions of the ex-

ecution, the sb relation must only relate actions on the same thread, the asw relation

must only relate actions on different threads, the sb and dd relations are both strict par-

tial orders, and the dd relation is a subset of the sb relation. The well formed threads

predicate:
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let well formed threads ((Xo, , ) : (pre execution ∗ execution witness ∗

relation list)) =

(∀ a ∈ Xo.actions . well formed action a) ∧

actions respect location kinds Xo.actions Xo.lk ∧

blocking observed Xo.actions Xo.sb ∧

inj on aid of Xo.actions ∧

relation over Xo.actions Xo.sb ∧

relation over Xo.actions Xo.asw ∧

threadwise Xo.actions Xo.sb ∧

interthread Xo.actions Xo.asw ∧

isStrictPartialOrder Xo.sb ∧

isStrictPartialOrder Xo.dd ∧

Xo.dd ⊆ Xo.sb ∧

indeterminate sequencing Xo ∧

isIrreflexive (sbasw Xo) ∧

finite prefixes (sbasw Xo) Xo.actions

Consistency of the execution witness The rest of the consistency predicate judges

whether the relations of the execution witness are allowed by the memory model. These

remaining conjuncts, presented below, are straightforward for the model that covers se-

quential programs.

The sc, mo and lo relations are required to be empty; they are not used in this model:

let sc mo lo empty ( , Xw , ) = null Xw .sc ∧ null Xw .mo ∧ null Xw .lo

The reads-from relation must only relate actions of the execution at the same location,

it must relate writes of some value to reads that get the same value, and a read can only

read from a single write:

let well formed rf (Xo, Xw , ) =

∀ (a, b) ∈ Xw .rf .

a ∈ Xo.actions ∧ b ∈ Xo.actions ∧

loc of a = loc of b ∧

is write a ∧ is read b ∧

value read by b = value written by a ∧

∀ a ′ ∈ Xo.actions . (a ′, b) ∈ Xw .rf −→ a = a ′

There is a reads-from edge to a read if and only if there is a write to the same location

that happens before it. This leaves open the possibility that consistent executions might

have reads with no rf edge, modelling a read from uninitialised memory that might take

any value:
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let det read (Xo, Xw , :: (“vse”, vse) :: ) =

∀ r ∈ Xo.actions .

is load r −→

(∃ w ∈ Xo.actions . (w , r) ∈ vse) =

(∃ w ′ ∈ Xo.actions . (w ′, r) ∈ Xw .rf )

Finally, all reads that do have a corresponding reads-from edge, must read from one

of the read’s visible side effects. In this model only non-atomic locations are allowed, so

this applies to all rf edges:

let consistent non atomic rf (Xo, Xw , :: (“vse”, vse) :: ) =

∀ (w , r) ∈ Xw .rf . is at non atomic location Xo.lk r −→

(w , r) ∈ vse

The consistency predicate, single thread consistent execution, collects these conjuncts

together. It is represented as a tree, whose branches and leaves are named in order to

provide names and useful structure to tools that use the model.

let single thread consistent execution =

Node [ (“assumptions”, Leaf assumptions);

(“sc mo lo empty”, Leaf sc mo lo empty);

(“tot empty”, Leaf tot empty);

(“well formed threads”, Leaf well formed threads);

(“well formed rf”, Leaf well formed rf);

(“consistent rf”,

Node [ (“det read”, Leaf det read);

(“consistent non atomic rf”, Leaf consistent non atomic rf) ]) ]

Consistency of an example execution The behaviour of C/C++ programs is largely

decided by the happens-before relation. Note that the value of a read is only constrained

by the memory model when there is a reads-from edge, and can take any value if there is

none.

Consider the consistency predicate applied to the running example. The predicate is

phrased in terms of the reads-from, happens-before and visible side effect relations, so in

the candidate execution below, only those relations are shown:
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int main() {

int x = 0;

int y = 0;

y = (x==x);

return 0; }

b:WNA y=0

c:RNA x=0 d:RNA x=0

e:WNA y=1

a:WNA x=0rf,vse
rf,vse

hb

hb hb

hb hb

Recalling that sequenced-before is transitive, and hence so is happens-before, it is clear

that all of the conjuncts of the predicate hold in this small example, so this candidate

execution is indeed consistent.

Contrast this with the following inconsistent execution of the program:

d:RNA x=42

a:WNA x=0

b:WNA y=0

c:RNA x=0

e:WNA y=1

hb

hb hb

rf,vse
rf,vse

hb

hb

Here, despite the fact that there is a visible side effect of the read labeled d, there is no

reads-from edge to it, and the execution violates the det read conjunct of the consistency

predicate.

3.1.3 Undefined behaviour

In C/C++11 there are several behaviours that programmers have a responsibility to

avoid. The model provides a ‘catch-fire’ semantics: if even one consistent execution of a

program exhibits one of these faulty behaviours, then the semantics of the entire program

is undefined. In single-threaded programs, there are two possible sources of undefined

behaviour: indeterminate reads and unsequenced races.

Indeterminate reads If a read is not related to any write by a reads-from edge, then

the memory model does not restrict the value it reads. This can only be consistent if

there are no writes of the same location that happen before the read, or, intuitively, if the

program has read from uninitialised memory. This behaviour, called an indeterminate

read , is considered a fault, and results in undefined behaviour:
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let indeterminate reads (Xo, Xw , ) =

{b | ∀ b ∈ Xo.actions | is read b ∧ ¬ (∃ a ∈ Xo.actions . (a, b) ∈ Xw .rf )}

To illustrate a consistent execution with an indeterminate read, consider a small ad-

justment of the running example: removing the initialisation write of x leaves the reads

of x in the consistent execution below without a preceding write in happens-before, and

therefore indeterminate.

int main() {

int x;

int y = 0;

y = (x==x);

return 0; }

d:RNA x=42c:RNA x=42

e:WNA y=1

b:WNA y=0

sb sb

sb sb

Unsequenced races As we have seen, sequenced-before is not total, and therefore it

is possible to access a location twice from the same thread without ordering the accesses.

The C/C++11 languages allow programmers to write code that leaves reads to the same

location unordered, but a write that is unordered with respect to another read or write on

the same location is considered a fault, called an unsequenced race, and this fault results

in undefined behaviour for the whole program:

let unsequenced races (Xo, , ) =

{ (a, b) | ∀ a ∈ Xo.actions b ∈ Xo.actions |

is at non atomic location Xo.lk a ∧

¬ (a = b) ∧ (loc of a = loc of b) ∧ (is write a ∨ is write b) ∧

(tid of a = tid of b) ∧

¬ ((a, b) ∈ Xo.sb ∨ (b, a) ∈ Xo.sb) }

A program with an unsequenced race has an execution that does not order a write

and another access with respect to one another, so, intuitively, they might happen at the

same time, and may interfere with one another.

A small modification of the running example introduces an unsequenced-race: change

a read to a write in one operand of the equality operator. The altered program and a

consistent execution are given below. Note the unsequenced race marked in orange.
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int main() {

int x = 0;

int y = 0;

y = (x==(x = 1));

return 0; }

b:WNA y=0

c:RNA x=0d:WNA x=1

e:WNA y=0

a:WNA x=0

ur

hb

hbhb

hb hb

rf

The list of undefined behaviours We collect the two sorts of undefined behaviour

together, attaching names to them to differentiate faults made up of one action, and faults

between two actions:

let single thread undefined behaviour =

[ Two (“unsequenced races”, unsequenced races);

One (“indeterminate reads”, indeterminate reads) ]

3.1.4 Model condition

The models throughout this chapter range from simple ones for restricted subsets of

the concurrency features to more complex ones for a more complete fragment of the

language, culminating in the full C/C++11 memory model. Each model is associated

with a restricted subset of the language to which the model applies — the model condition

precisely identifies these programs. If the model is applied to a program that violates the

model condition, then the model gives the program undefined behaviour, even though the

program may have defined behaviour in a more complete model.

The model presented in this section applies to programs with a single thread that use

only non-atomic memory locations.

let single thread condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .

∃ b ∈ Xo.actions . ∀ a ∈ Xo.actions .

(tid of a = tid of b) ∧

match (loc of a) with

| Nothing → false

| Just l → (Xo.lk l = Non Atomic)

end

3.1.5 Memory model and top-level judgement

The constituent parts of the single-threaded memory model have all been introduced, so

we can now present the single thread memory model record:



64

let single thread memory model =

⟨| consistent = single thread consistent execution;

relation calculation = single thread relations;

undefined = single thread undefined behaviour;

relation flags =

⟨| rf flag = true;

mo flag = false;

sc flag = false;

lo flag = false;

tot flag = false |⟩

|⟩

The semantics of a program are decided by the combination of the thread-local se-

mantics and the memory model. Programs can have undefined behaviour, or allow a set

of candidate executions:

type program behaviours =

Defined of set (observable execution)

| Undefined

To generate the behaviours of a program, the semantics first generates a set of con-

sistent executions. Each execution in this set must satisfy the thread-local semantics,

satisfy the consistency predicate and have the correct set of calculated relations. If the

program obeys the model condition, and there are no sources of undefined behaviour in

any consistent execution, then the behaviour of the program is defined and is the set

of consistent executions, otherwise the behaviour is undefined. The behaviour function

performs this calculation, taking a thread-local semantics and a program, and returning

the behaviours of that program.

let behaviour M condition opsem (p : program) =

let consistent executions =

{ (Xo, Xw , rl) |

opsem p Xo ∧

apply tree M .consistent (Xo, Xw , rl) ∧

rl = M .relation calculation Xo Xw } in

if condition consistent executions ∧

∀ X ∈ consistent executions .

each empty M .undefined X

then Defined (observable filter consistent executions)

else Undefined

The behaviour of a program under the single-threaded memory model is calculated by

applying this function to the program, a thread-local semantics, the single-threaded model
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condition and the single-threaded memory model. The behaviour of a given program

according to the models in the rest of this chapter can be calculated similarly.

3.2 Multi-threaded programs with locks

This section introduces the locks only memory model that allows the programmer to use

multiple threads, making it possible to write concurrent programs. This introduces a

new sort of fault: data races — unordered overlapping concurrent accesses to memory.

Programmers are given mutexes, which allow locking of thread-local code, that can be

used to create order between threads and avoid data races.

3.2.1 Thread creation syntax

The syntax for thread creation in C/C++11 is verbose, and its complexity would obscure

relatively simple examples. The following example uses the standard thread creation

syntax, defining a function, foo, that is run on two threads with different values. It is

our convention in example executions to vertically align actions from a single thread.

void foo(int* p) {*p=1;}

int main() {

int x = 0;

int y = 0;

thread t1(foo, &x);

thread t2(foo, &y);

t1.join();

t2.join();

return 0; }
f:RNA t2=thrd2

b:WNA y=0 h:RNA p=x

g:WNA p=x

i:WNA x=1c:WNA t1=thrd1

k:RNA p6=y

a:WNA x=0

l:WNA y=1

j:WNA p6=y

e:RNA t1=thrd1

d:WNA t2=thrd2

sb

sb

sb

sb

sb

sb

sb

sb

sb

asw

asw

There are a great many accesses in the execution above whose sole purpose is book-

keeping: there are writes and dereferences of function pointers in thread creation, and

loads and stores that pass references to variables on each thread. These accesses obscure

the simplicity of the example. Instead of using this syntax, or C++11 lambda expression

syntax, the examples that follow use an alternate more restrictive form that is not part of

C/C++11. This supports structured parallelism only, which is sufficient for our purposes,

clarifies example programs and executions, and elides uninteresting memory accesses. The

new syntax consists of a fork of some number of threads that is opened with a triple left

brace, {{{. Each thread is then expressed as an expression, delimited by a triple bar, |||,

and the parallel composition is closed with triple right braces, }}}. The program above
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becomes:

int main() {

int x = 0;

int y = 0;

{{{ x = 1; ||| y = 1; }}};

return 0; }

a:WNA x=0

b:WNA y=0

c:WNA x=1 d:WNA y=1

asw
sb asw

One consequence of this transformation is that executions of the transformed program

lack non-atomic memory actions that would have been created in manipulating function

pointers and accessing thread arguments. These actions are absent in the composition

syntax, but because they are thread-local in the original program, and cannot be ac-

cessed from other threads, they cannot form races or synchronisation. Consequently, the

transformation does not change the behaviour of the program.

There is a new constraint imposed by the structure of the program present in the

executions above: additional synchronises with, asw. This new relation, identified by the

thread-local semantics, records parent-to-child ordering introduced by thread creation and

child-to-parent ordering induced by thread joining. The asw relation is a component of

happens-before.

3.2.2 Data races and mutexes

As mentioned above, the sublanguage described in this section can be used to write

programs with data races — one sort of fault that leaves a program with undefined

behaviour. Two actions form a data race when they act on the same location from

different threads, at least one of them is a write, and they are unordered by happens-

before. The formal definition is given below:

let data races (Xo, Xw , (“hb”, hb) :: ) =

{ (a, b) | ∀ a ∈ Xo.actions b ∈ Xo.actions |

¬ (a = b) ∧ (loc of a = loc of b) ∧ (is write a ∨ is write b) ∧

(tid of a ̸= tid of b) ∧

¬ (is atomic action a ∧ is atomic action b) ∧

¬ ((a, b) ∈ hb ∨ (b, a) ∈ hb) }

There is a concrete architectural reason to have data races lead to undefined behaviour:

each target architecture will implement non-atomic accesses differently, and for some types

on some architecture it may be necessary to break up an access into several smaller accesses

if, for instance, the object spans more bytes than the hardware can write or read in a single

instruction. If two such accesses were made to a single object, and the constituent accesses

were to interfere, even by simply interleaving, then that could result in corruption of the

object. In a race-free program, these accesses can not interfere, avoiding the problem.
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The compiler uses data-race freedom as an invariant in optimisation: it assumes that

it can optimise non-atomic accesses as if no other thread is accessing them. This is very

useful, because it allows the compiler to reuse sequential optimisations in the concurrent

setting.

The following program gives rise to a consistent execution with a data race, shown on

the right:

int main() {

int x = 0;

{{{ x = 1; ||| r1 = x; }}};

return 0;

}

c:RNA x=0b:WNA x=1

a:WNA x=0

dr

hb hb

C/C++11 provide several mechanisms that allow multiple threads to communicate

without introducing data races. The simplest of these is mutex locking and unlocking.

Locks and unlocks act over mutex locations, and their behaviour is governed by a per-

location total order over the locks and unlocks called lock order (lo). Rules in the consis-

tency predicate ensure that regions of code that are locked and unlocked synchronise-with

later regions in lock order. The following program differs from the previous example in

that it has the racing actions inside locked regions. The execution shows one lock order

over the actions at the mutex location. The locked regions synchronise, creating a new

edge in the execution graph: synchronises-with, sw. The sw relation is part of happens-

before, and happens-before is transitive in this model, so there is no race in this execution.

We adopt the convention of eliding the actions of the parent thread when they are not

relevant, as in this execution:

int main() {

int x = 0;

mutex m;

{{{ { m.lock();

x = 1;

m.unlock(); }

||| { m.lock();

r1 = x;

m.unlock(); }

}}};

return 0;

}

d:L m Locked

e:WNA x=1

l:U m

i:L m Locked

j:RNA x=1

g:U m

sb

sb
lo,sw

sb

sb

lolo

Happens-before The new synchronises-with relation represents inter-thread synchro-

nisation. Both thread creation and mutex actions can create sw edges. More precisely, all
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additional-synchronises-with edges are in synchronises-with, and unlocks synchronise with

all lock-order-later locks. The formal definition of synchronises-with is then a function:

let locks only sw actions asw lo a b =

(tid of a ̸= tid of b) ∧

( (* thread sync *)

(a, b) ∈ asw ∨

(* mutex sync *)

(is unlock a ∧ is lock b ∧ (a, b) ∈ lo)

)

Synchronisation creates happens-before edges: the calculation of the happens-before

relation changes include the new synchronises-with edges, and the transitive closure:

let no consume hb sb sw =

transitiveClosure (sb ∪ sw)

The execution in the following example shows the transitive reduction of the happens-

before edges that exist because of thread-local sequenced-before and inter-thread synchro-

nisation. Note that the write and read of x are now ordered, so this execution no longer

has a data race.

int main() {

int x = 0;

mutex m;

{{{ { m.lock();

x = 1;

m.unlock(); }

||| { m.lock();

r1 = x;

m.unlock(); }

}}};

return 0;

}

g:U m

j:RNA x=1e:WNA x=1

i:L m Lockedd:L m Locked

l:U m

hb

hb

hb

hb
rf

lo,hb

lo lo

On IBM’s Power architecture, mutexes are implemented with a load-linked/store-

conditional loop, exiting when the store-conditional succeeds, acquiring the lock. The

load-linked/store-conditional mechanism is implemented by monitoring the cache line

containing the mutex. The cache line can be shared with other data, so seemingly-

unrelated cache trafic can cause the store conditional to fail. This means there can be

no formal guarantee of progress, and the lock can block arbitrarily, although in practice,

processor designers try to avoid this. To make C/C++11 implementable above such

architectures, each call to lock()may arbitrarily block for ever: the locks are implemented
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with a loop involving load-linked and store-conditional accesses, and cache trafic can

cause the loop to block indefinitely. To accomodate blocking, the thread-local semantics

enumerates pre-executions with both the successful and blocked cases for each lock. A

blocked lock causes the thread-local semantics to abbreviate the thread so that there

are no sequenced-before successors. This is enforced by the blocking observed predicate

(§3.1). The following example represents an execution of the previous program where one

of the locks blocks, and has no sb-successors.

d:L m Blocked

i:U m

f:L m Locked

g:RNA x=0

sb

lo

sb

lo,sw

3.2.3 Mutexes in the formal model

The consistency predicate restricts which lock orders can be observed in an execution with

the locks only consistent lo and locks only consistent locks predicates, described below.

The locks only consistent lo predicate restricts the lock order relation: it must be

transitive and irreflexive, it must agree with happens-before, it must relate only locks and

unlocks at the same mutex location, and it must be total over such actions:

let locks only consistent lo (Xo, Xw , (“hb”, hb) :: ) =

relation over Xo.actions Xw .lo ∧

isTransitive Xw .lo ∧

isIrreflexive Xw .lo ∧

∀ a ∈ Xo.actions b ∈ Xo.actions .

((a, b) ∈ Xw .lo −→ ¬ ((b, a) ∈ hb)) ∧

( ((a, b) ∈ Xw .lo ∨ (b, a) ∈ Xw .lo)

=

( (¬ (a = b)) ∧

(is lock a ∨ is unlock a) ∧

(is lock b ∨ is unlock b) ∧

(loc of a = loc of b) ∧

is at mutex location Xo.lk a

)

)

The locks only consistent locks predicate requires any pair of successful locks ordered

by lock order to have an intervening unlock:
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let locks only consistent locks (Xo, Xw , ) =

(∀ (a, c) ∈ Xw .lo.

is successful lock a ∧ is successful lock c

−→

(∃ b ∈ Xo.actions . is unlock b ∧ (a, b) ∈ Xw .lo ∧ (b, c) ∈ Xw .lo))

Returning to the previous example program and execution, we can see that it is

consistent according to this criterion:

int main() {

int x = 0;

mutex m;

{{{ { m.lock();

x = 1;

m.unlock(); }

||| { m.lock();

r1 = x;

m.unlock(); }

}}};

return 0;

}

d:L m Locked

e:WNA x=1

l:U m

i:L m Locked

j:RNA x=1

g:U m

sb

sb
lo,sw

sb

sb

lolo

Mutexes must be used correctly by programs, otherwise their behaviour will be unde-

fined. C/C++11 impose a locking discipline that has two requirements. First, in every

execution, all unlocks must be immediately preceded in lo by a lock that is sequenced

before them. Second, no thread may lock a mutex and then perform another lock, of the

same mutex, on the same thread without an intervening unlock of that mutex in lock

order. These requirements are captured by the locks only good mutex use predicate:

let locks only good mutex use actions lk sb lo a =

(* violated requirement: The calling thread shall own the mutex. *)

( is unlock a

−→

( ∃ al ∈ actions .

is successful lock al ∧ (al , a) ∈ sb ∧ (al , a) ∈ lo ∧

∀ au ∈ actions .

is unlock au −→ ¬ ((al , au) ∈ lo ∧ (au, a) ∈ lo)

)

) ∧

(* violated requirement: The calling thread does not own the mutex.

*)

( is lock a
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−→

∀ al ∈ actions .

is successful lock al ∧ (al , a) ∈ sb ∧ (al , a) ∈ lo

−→

∃ au ∈ actions .

is unlock au ∧ (al , au) ∈ lo ∧ (au, a) ∈ lo

)

A violation of this discipline by any execution of the program results in undefined

behaviour — locks only bad mutexes captures all of the actions in an execution that violate

the locking discipline:

let locks only bad mutexes (Xo, Xw , ) =

{ a | ∀ a ∈ Xo.actions |

¬ (locks only good mutex use Xo.actions Xo.lk Xo.sb Xw .lo a)}

The locks-only model condition This model applies to programs that use multiple

threads with mutexes, but without atomic accesses. The model condition below precisely

identifies the programs to which the model applies.

let locks only condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .

∀ a ∈ Xo.actions .

match (loc of a) with

| Nothing → false

| Just l → (Xo.lk l ∈ {Mutex, Non Atomic})

end

3.3 Relaxed atomic accesses

In the previous model, programs that contained data races had undefined behaviour. In

multi-threaded programs, locks could be used to create synchronisation and avoid data

races. C/C++11 cater to a variety of programmers, including systems programers who

require high performance. For the highest performance, locking is too expensive and lock-

free code is used, which may intentionally contain data races. C/C++11 provide atomic

memory accesses with which to write racy programs.

This section describes the relaxed only memory model that includes the least ordered

atomic accesses, those with relaxed memory order. Racing atomic accesses do not

lead to undefined behaviour, and as a consequence, the definition of data races changes to

exclude races between atomic accesses. Note that atomic initialisations are not themselves

atomic accesses, so they can race with other accesses to the same location:
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let data races (Xo, Xw , (“hb”, hb) :: ) =

{ (a, b) | ∀ a ∈ Xo.actions b ∈ Xo.actions |

¬ (a = b) ∧ (loc of a = loc of b) ∧ (is write a ∨ is write b) ∧

(tid of a ̸= tid of b) ∧

¬ (is atomic action a ∧ is atomic action b) ∧

¬ ((a, b) ∈ hb ∨ (b, a) ∈ hb) }

Returning to our previous example of a racy program with undefined behaviour:

int main() {

int x = 0;

{{{ x = 1; ||| r1 = x; }}};

return 0;

}

c:RNA x=0b:WNA x=1

a:WNA x=0

dr

hb hb

The program can be given defined behaviour by changing the shared location to an

atomic one, and accessing it with atomic loads and stores:

int main() {

atomic_int x = 0;

{{{ x.store(1, relaxed);

||| r1 = x.load(relaxed);

}}};

return 0;

}

b:WRLX x=1

a:WNA x=0

c:RRLX x=0

asw,rfasw

b:WRLX x=1 c:RRLX x=1

a:WNA x=0
asw asw

rf

Atomic accesses allow the programmer to write racy code, so now the memory be-

haviour of racing relaxed atomic accesses must be defined. Now there are two possible

executions of the program, both printed above: one where the load reads the value 0

and one where it reads 1. Note that in the execution on the right above, the read in the

right-hand thread reads from the write in the left hand thread despite the absence of a

happens-before edge from left to right. This would be forbidden for non-atomic accesses

— they must read a visible side effect as in the execution on the left. Instead, reads

of atomic locations are free to read any write that does not happen after them. This

restriction forms a new conjunct of the consistency predicate:
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let consistent atomic rf (Xo, Xw , (“hb”, hb) :: ) =

∀ (w , r) ∈ Xw .rf . is at atomic location Xo.lk r ∧ is load r −→

¬ ((r , w) ∈ hb)

Modification order and coherence Most of the common target architectures (x86,

Power, ARM, SPARC-TSO) provide a relatively strong guarantee about the ordering of

writes to a single location in a program: they ensure that all of the writes at a single

location appear to happen in a sequence, and that reads from any thread see the writes

in an order consistent with that sequence. C/C++11 provides a similar guarantee over

atomic locations: atomic actions are governed by a per-location total order over the

writes, called modification order . Modification order does not contribute to happens-

before, because that would rule out executions that are allowed on the Power architecture

(see 2+2w in Section 3.3.1).

The following program has two possible executions, printed beneath. In each, there is

a modification order edge between the writes on the two threads, but no happens-before

edge. There is nothing to constrain the direction of modification order between the writes

on the two threads, so there is an execution for either direction, and we could witness this

direction with an observer thread that reads twice from x.

int main() {

atomic_int x = 0;

{{{ { x.store(1,relaxed); }

||| { x.store(2,relaxed); }

}}}

return 0;

}

a:WNA x=0

b:WRLX x=1 c:WRLX x=2
mo

mo,hb hb
a:WNA x=0

b:WRLX x=1 c:WRLX x=2
mo

mo,hb hb

Modification order is a dynamic ordering of writes in memory, and is part of the

execution witness. The consistent mo predicate, given below, checks that modification

order is a per-location strict total order over the writes:

let consistent mo (Xo, Xw , ) =

relation over Xo.actions Xw .mo ∧

isTransitive Xw .mo ∧

isIrreflexive Xw .mo ∧

∀ a ∈ Xo.actions b ∈ Xo.actions .

((a, b) ∈ Xw .mo ∨ (b, a) ∈ Xw .mo)
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= ( (¬ (a = b)) ∧

is write a ∧ is write b ∧

(loc of a = loc of b) ∧

is at atomic location Xo.lk a )

Although modification order does not directly contribute to happens-before, the two

must be coherent . Intuitively, coherence is the part of the C/C++11 model that requires

the reads of an atomic location to read from writes that are consistent with the modifi-

cation order, as guaranteed by the processors. Coherence is defined as an absence of the

following four subgraphs in an execution:

CoRR In the first subgraph, two writes are made, one before the other in modification

order. Two reads, ordered by happens-before, are not allowed to read from the writes in

the opposite order. The following execution fragment exhibits the forbidden behaviour:

b:WRLX x=1

c:WRLX x=2 e:RRLX x=1

d:RRLX x=2

mo hb
rf

rf

The other forbidden subgraphs can be thought of as derivatives of CoRR coherence

where either one or both of the pairs of actions related by rf are replaced by a single

write, and the subgraph is suitably contracted. First, we replace the reads-from edge

that points to the first read to get CoWR coherence:

CoWR In this subgraph, there are two writes that are ordered by modification order.

The later write happens before a read, and that read reads from the modification-order-

earlier write. In this forbidden execution shape, the read is reading from a stale write

when a more recent write in modification order happens before the read:

d:RRLX x=1

b:WRLX x=1 c:WRLX x=2
mo

rf hb

CoRW In this subgraph there is a cycle in the modification order, happens-before and

reads-from relations. Modification order, happens-before and reads-from each have a

temporal connotation, so it seems that they should not be cyclic, and indeed this is

forbidden:

d:WRLX x=1

b:WRLX x=2 c:RRLX x=2
rf

hb
mo



75

CoWW The final subgraph simply requires happens-before and modification order to

agree. Execution fragments with opposing edges like the one below are forbidden:

b:WRLX x=2

a:WRLX x=1

mo hb

These four execution fragments are forbidden in consistent executions by the coher-

ent memory use predicate:

let coherent memory use (Xo, Xw , (“hb”, hb) :: ) =

(* CoRR *)

( ¬ ( ∃ (a, b) ∈ Xw .rf (c, d) ∈ Xw .rf .

(b, d) ∈ hb ∧ (c, a) ∈ Xw .mo ) ) ∧

(* CoWR *)

( ¬ ( ∃ (a, b) ∈ Xw .rf c ∈ Xo.actions .

(c, b) ∈ hb ∧ (a, c) ∈ Xw .mo ) ) ∧

(* CoRW *)

( ¬ ( ∃ (a, b) ∈ Xw .rf c ∈ Xo.actions .

(b, c) ∈ hb ∧ (c, a) ∈ Xw .mo ) ) ∧

(* CoWW *)

( ¬ (∃ (a, b) ∈ hb. (b, a) ∈ Xw .mo) )

Read-modify writes There are functions in the C/C++11 atomics library that allow

the programmer to indivisibly read and write to a location in memory, providing the

abilities like indivisibly testing and setting a flag, or incrementing an atomic location. we

focus on the compare-and-swap (CAS) operation that allow one to indivisibly read and

then write the memory. CAS takes four arguments:

atomic location the location of the atomic that the CAS acts on,

expected pointer a pointer to a memory location containing the value that must be

read for the CAS to succeed,

desired value the value to write to the atomic location in the event of success,

failure memory order the memory order of the atomic read in the event of failure,

success memory order the memory ordering for the atomic access in the event of

success.

A CAS reads an atomic location, checking for an expected value that is pointed to by

the expected pointer. The CAS gives rise to two possible sequences of actions depending

on whether it succeeds or fails. First the value at the expected location is read, and then
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the atomic location is accessed. If the expected value is read at the atomic location, then

the CAS writes the desired value to the atomic location. The read and write of the atomic

location are made together in one atomic memory access called a read-modify-write. In

the successful case, the CAS evaluates to true. If the value was not as expected, then the

value read from the atomic location is written to the location pointed to in the expected

argument, there is no write of the atomic location, and the CAS evaluates to false.

The third and fourth arguments of the CAS provide the memory orders of the accesses

to the atomic location: in the case of a failure, the read of the atomic location is performed

with the failure memory order, and on success, the read-modify-write-access is performed

with the success memory order.

There are two sorts of CAS in C/C++11: weak CAS and strong CAS. A weak CAS

may spuriously fail, even when the value read from the atomic location matches the value

pointed to by expected. Strong CAS, on the other hand, fails only when the value read

differs from the value at the expected location. Strong CAS must be implemented with

a loop on the Power and ARM architectures. The body of the loop first does a load-

linked, breaking out of the loop if the value does not match expected, and performing a

store-conditional if it does. If that store-conditional fails, then the loop repeats, and if

not then the CAS has succeeded. Unfortunately, accesses to memory cached in the same

cache line as that of the CAS can cause the store-conditional to repeatedly fail, so there is

no guarantee that it will eventually succeed, and the specification of the C/C++11 CAS

must admit the possibility of blocking. Consequently, strong CAS calls in C/C++11

generate pre-executions where the CAS results in a blocked read-modify-write action in

addition to pre-executions where it succeeds.

The read and write in a successful CAS operation are indivisible, and are represented

by a read-modify-write action, that both reads from and writes to memory. In order to

enforce atomicity, the memory model requires that the read-modify-write read from the

immediately preceding write in modification order. A new conjunct to the consistency

predicate, rmw atomicity, given below, enforces this requirement:

let adjacent less than ord s x y =

(x , y) ∈ ord ∧ ¬ (∃ z ∈ s . (x , z ) ∈ ord ∧ (z , y) ∈ ord)

let rmw atomicity (Xo, Xw , ) =

∀ b ∈ Xo.actions a ∈ Xo.actions .

is RMW b −→ (adjacent less than Xw .mo Xo.actions a b = ((a, b) ∈ Xw .rf ))

The following example illustrates an execution of the program where a successful CAS

operation has given rise to a read-modify-write action in the execution. The RMW reads

the immediately preceding write in modification order, as required by the predicate above.

The accesses to e are elided:
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int main() {

atomic_int x = 0; int e = 1;

{{{ { x.store(1,relaxed); }

||| { cas_weak_explicit(&x,&e,2,relaxed,relaxed); }

||| { x.store(3,relaxed); }

}}}

return 0;

}

a:WNA x=0

d:WRLX x=3

c:RMWRLX x=1/2

b:WRLX x=1

mo

mo

rf,mo

Although adding relaxed atomic accesses allows many new complicated behaviours,

the changes to the model are relatively modest. We have added modification order to

the execution witness, but undefined behaviour, the calculated relations and the relations

of the pre-execution remain the same. The consistency predicate changes to reflect the

addition of the atomics and modification order.

3.3.1 Relaxed atomic behaviour

In this section we explore the C/C++11 memory model for relaxed atomics through a

series of litmus tests, in the context of target processor architectures, compiler optimi-

sations, and common programming idioms. We relate the tests to the hardware using

the compiler mappings provided in Chapter 2. If these mappings are to be sound, any

behaviour that the underlying processors allow for mapped analogous programs must be

allowed by C/C++11 (see Chapter 7 for discussion of proofs that show the x86 and Power

mappings are sound). The fragment of the mapping that applies to relaxed atomics is

given below. Relaxed loads and stores map to plain loads and stores on x86, Power and

ARM:

C/C++11 X86 Power ARM Itanium

load relaxed MOV (from memory) ld ldr ld.acq

store relaxed MOV (into memory) st str st.rel

The C/C++11 relaxed atomics are weaker than all three architectures, making the

relaxed atomics implementable without adding any explicit synchronising. We will return

to variants of these tests that use other memory orders as they are introduced.
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Message passing, MP

The first example of relaxed behaviour is exhibited by the message-passing test, the first

litmus test we considered in the introduction. In the version of the test below we omit the

while loop on the read of the flag variable for simplicity, and we consider executions where

the read of the flag variable y sees the write of 1. In the execution below, despite seeing

the write of y, the second read fails to read from the write of x on the writer thread, and

instead reads from the initialisation. The program demonstrates that a reads-from edge

between relaxed atomics does not order a write with respect to a read on another thread.

int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { x.store(1,relaxed);

y.store(1,relaxed); }

||| { r1 = y.load(relaxed);

r2 = x.load(relaxed); }

}}}

return 0;

}

a:WNA x=0

f:RRLX x=0

c:WRLX x=1 e:RRLX y=1

d:WRLX y=1
sb

rf
sbrf

While the x86 architecture forbids this behaviour, Power and ARM allow it. On x86,

the writes to x and y are placed in the thread local write buffer in order, and reach

memory in order, so if the reading thread sees the write to y, then the write to x must

have reached memory. On Power and ARM, the writes could be committed out of order,

they could be propagated out of order, or the reads could be committed out of order, and

each of these gives rise to the relaxed behaviour. A compiler could introduce this sort

of behaviour by noticing that there are no thread-local dependencies and re-ordering the

memory accesses on either the writing thread or the reading thread.

Store buffering, SB

In Chapter 2, the x86 memory model was discussed in terms of a concrete hypothetical

micro-architecture: each processor has a write buffer between it and a global main mem-

ory. Writes in the buffer can be read directly by the associated processor, but cannot be

seen by others until they are flushed to main memory. store-buffering is the only relaxed

behaviour that x86 allows. The following example shows store buffering behaviour in

C/C++11:
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int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { x.store(1,relaxed);

r1 = y.load(relaxed); }

||| { y.store(1,relaxed);

r2 = x.load(relaxed); }

}}}

return 0;

}

b:WNA y=0

d:RRLX y=0

a:WNA x=0

e:WRLX y=1

f:RRLX x=0

c:WRLX x=1

sb

sb

sb

rf

rf

The x86 architecture allows this behaviour: each thread can buffer the write, and then

read the initialisation writes from main memory. The analogous program also produces

this execution on the Power and ARM architectures. There, the writes need not be

propagated before the reads are committed. Again a compiler might spot that the accesses

on each thread are unrelated and reorder, allowing the behaviour.

As discussed in Section 2.2, Dekker’s algorithm for mutual exclusion relies on the

absence of store-buffering behaviour: in its presence the algorithm can allow two clients

to simultaneously enter the critical section.

Independent reads of independent writes, IRIW

In this test, presented by Collier [43], we observe a violation of multi-copy atomicity: we

see the writes of the writer threads in two different orders on the reader threads. This test

is the relaxed C/C++11 analogue of the Power and ARM test from Chapter 2, so the test

includes dependencies that (if compiled naively) would prevent thread-local speculation

on the hardware.
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int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ x.store(1,relaxed);

||| y.store(1,relaxed);

||| { r1 = x.load(relaxed);

r2 = (*(&y+r1-r1)).load(relaxed); }

||| { r3 = y.load(relaxed);

r4 = (*(&x+r3-r3)).load(relaxed); }

}}}

return 0;

}

a:WNA x=0

b:WNA y=0

h:RRLX x=0f:RRLX y=0

c:WRLX x=1 e:RRLX x=1d:WRLX y=1 g:RRLX y=1

sb

rf

sb

rf rf

sb rf

Each reader thread sees the writes occur in a different order. The Power and ARM

architectures allow this behaviour because they can propagate the writes to the reader

threads individually and out of order. C/C++11 also violates multi-copy atomicity here:

the execution above is allowed by the memory model. There is no speculation mechanism

to disable in C/C++11, nor is there propagation — the execution is allowed because none

of the rules of the model forbid it. Note that the dependencies in this example could be

optimised away by a C/C++11 compiler.

Write-read causality, WRC

WRC (taken from Boehm and Adve [37]), is similar to MP, in that apparent causality

implied by reading across threads is not enough to create order. This time the program

demonstrates that a reads-from edge does not order two reads from the same location:

the read on the centre thread sees the write on the first thread, whereas the read in the

right-hand thread does not.
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int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ x.store(1,relaxed);

||| { r1 = x.load(relaxed);

y.store(1,relaxed); }

||| { r2 = y.load(relaxed);

r3 = x.load(relaxed); }

}}}

return 0;

}

a:WNA x=0

g:RRLX x=0

c:WRLX x=1 d:RRLX x=1

e:WRLX y=1

f:RRLX y=1

sb
rf

sb
rfrf

In discussing cumulativity, Chapter 2 presented a variant of WRC that included an

lwsync barrier as well as dependencies on the middle and right-hand threads. On the

Power and ARM architectures, dependencies disable the thread-local speculation mecha-

nism and this allowed us to consider the order of propagation of writes to different threads

in executions of the example. We return to that example now, albeit without the barrier,

written with relaxed atomics.

int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ x.store(1,relaxed);

||| { r1 = x.load(relaxed);

y.store(1+r1-r1,relaxed); }

||| { r2 = y.load(relaxed);

r3 = (*(&x+r2-r2)).load(relaxed); }

}}}

return 0;

}

a:WNA x=0

g:RRLX x=0

c:WRLX x=1 d:RRLX x=1

e:WRLX y=1

f:RRLX y=1

sb
rf

sb
rfrf

The relaxed outcome above was allowed on Power and ARM, even without thread-

local speculation, because the write of x can propagate to the middle thread before the

write of y committed, and then can be propagated after the write of y to the right-hand

thread. In C/C++11, the dependencies can be compiled away, permitting even more

architectural relaxed behaviour.

ISA2

We now consider ISA2, a simplified version of Example 2 from §1.7.1 of the 2009 Power

ISA [7], and the second test in Chapter 2 that introduced cumulativity. Again, we consider
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the C/C++11 analogue of the test, without the barrier:

int main() {

atomic_int x = 0;

atomic_int y = 0;

atomic_int z = 0;

{{{ { x.store(1,relaxed);

y.store(1,relaxed); }

||| { r1 = y.load(relaxed);

z.store(1+r1-r1,relaxed); }

||| { r2 = z.load(relaxed);

r3 = (*(&x+r2-r2)).load(relaxed); }

}}}

return 0;

}

f:RRLX y=1d:WRLX x=1

e:WRLX y=1 g:WRLX z=1 i:RRLX x=1

h:RRLX z=1

rf sb
rf sbsb

rf

The relaxed outcome above was allowed on Power and ARM, even without thread-

local speculation, because the write of x can propagate to the middle thread before the

write of y. Again, the compiler can remove the dependencies, permitting more relaxed

behaviour.

Read-write causality, RWC

In this test, from Boehm and Adve [37], the write of x on the left-hand thread is read

by the middle thread, and the write of y on the right-hand thread is not read by the

middle thread. The question is whether the right-hand thread should be allowed to read

from the initialisation or not. This test is motivated by questions about the order of

write propagation on the Power and ARM architectures, and in that regard it is related

to WRC. As with WRC, we consider a variant of the test with dependencies that prevent

thread-local speculation on the hardware.

int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ x.store(1,relaxed);

||| { r1 = x.load(relaxed);

r2 = (*(&y+r1-r1)).load(relaxed); }

||| { y.store(1,relaxed);

r3 = x.load(relaxed); }

}}}

return 0;

}

a:WNA x=0

b:WNA y=0 g:RRLX x=0e:RRLX y=0

c:WRLX x=1 d:RRLX x=1 f:WRLX y=1
sbsb sb

rf

rf

rf

On Power and ARM, we know from the values that are read, that the write of x is
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propagated to the middle thread before the write of y. Even so, the write of x can be

propagated to the right-hand thread after the write has been committed, and an execution

analogous to the one above is allowed. C/C++11 allows this behaviour.

S

S (taken from Maranget et al. [71]) tests whether reads-from and modification order

between actions at different locations can form a cycle when combined with sequenced

before. The execution below shows that executions with such a cycle are allowed by

C/C++11.

int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { x.store(2,relaxed);

y.store(1,relaxed); }

||| { r2 = y.load(relaxed);

x.store(1,relaxed); }

}}}

return 0;

}

f:WRLX x=1

c:WRLX x=2

d:WRLX y=1

e:RRLX y=1

rf mo
sb sb

This behaviour is forbidden on x86, but observable on Power and ARM processors:

because the writes on the left-hand thread are independent, they can be committed and

propagated out of order, allowing this behaviour.

R

This test, taken from Maranget et al. [71], is similar to the message-passing test that

checked whether a reads-from edge created ordering between threads, but we replace the

reads-from edge with a modification-order edge. It checks whether a modification order

edge is sufficient to force a write on one thread to be seen by a read on another.

int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { x.store(1,relaxed);

y.store(1,relaxed); }

||| { y.store(2,relaxed);

r1 = x.load(relaxed); }

}}}

return 0;

}

a:WNA x=0 c:WRLX x=1

f:RRLX x=0

e:WRLX y=2

d:WRLX y=1

mo

sb
sb mo

rf
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On Power and ARM, the analogue of this test, with coherence commitment order

replacing modification order, can produce the relaxed behaviour. This could occur by

speculating the read on the right-hand thread, or by propagating the writes out of order.

This behaviour is allowed in C/C++11.

2+2W

This test, taken from Maranget et al. [71], highlights that the union of modification order

across all locations is not part of happens-before. In this example, modification order

union sequenced-before is cyclic. This relaxed behaviour is allowed on C/C++11 and

again its analogue is allowed on Power and ARM just by local reordering.

int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { x.store(2,relaxed);

y.store(1,relaxed);}

||| { y.store(2,relaxed);

x.store(1,relaxed);}

}}}

return 0;

}

f:WRLX x=1

c:WRLX x=2

d:WRLX y=1

e:WRLX y=2
sb sb

momo

Load buffering, LB

In this test, taken from Maranget et al. [71], two reads each appear to read from the

future on their sibling thread, creating a cycle in happens-before union reads-from. This

behaviour is allowed by C/C++11, Power and ARM, and can be observed on ARM

processors. On Power and ARM, this is allowed by committing the accesses out of order

on each thread.

int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { r1 = x.load(relaxed);

y.store(1,relaxed); }

||| { r2 = y.load(relaxed);

x.store(1,relaxed); }

}}}

return 0;

}

c:RRLX x=1 e:RRLX y=1

d:WRLX y=1 f:WRLX x=1

sb sb

rf rf
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Self satisfying conditionals, SSC

This test (taken from Section 29.3p11 of the C++11 standard [30]) is a variant of load-

buffering where both writes are guarded by conditionals that are satisfied only if the

relaxed behaviour is visible. This test is allowed in C/C++11 but forbidden on Power,

ARM and x86. Each of the target architectures respects the control-flow dependency

order, forbidding the execution.

int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { if(x.load(relaxed))

y.store(1,relaxed); }

||| { if(y.load(relaxed))

x.store(1,relaxed); }

}}}

return 0;

}

f:WRLX x=1

c:RRLX x=1

d:WRLX y=1

e:RRLX y=1

sb,cd sb,cd
rf rf

C/C++11 is designed to allow compiler optimisations like common-subexpresion elim-

ination (CSE) that remove control-flow dependencies. There is a tension between allowing

this sort of optimisation and forbidding unintuitive behaviours like the one above. As it

stands, the standard fails to define this part of the memory model well, and devising a

better definition is a difficult problem. See Section 5.10.1 for details.

3.4 Simple release and acquire programs

So far, locks are the only mechanism that can be employed to synchronise multiple threads

and avoid races between non-atomics in concurrent code. Locks create very strong syn-

chronisation, and as a consequence require expensive explicit synchronisation on common

architectures.

This section introduces the release acquire memory model that includes lightweight

inter-thread synchronisation through atomic memory accesses. The model presented here

applies to programs whose atomic stores use the release memory order, whose atomic

loads use the acquire order and whose CAS calls use acquire for failure and acq rel

for success.

The compilation mappings for the release and acquire atomics introduce explicit syn-

chronisation on the Power and ARM architectures, providing more ordering than the

relaxed atomics at some cost to performance. The compiler mappings for the loads and
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stores of this fragment of the language are1:

C/C++11 X86 Power ARM Itanium

load acquire MOV (from memory) ld; cmp; bc; isync ldr; teq; beq; isb ld.acq

store release MOV (into memory) lwsync; st dmb; str st.rel

In the C/C++11 memory model, the release, acquire and acq rel annotations on

atomics cause atomic accesses to synchronise, creating happens-before edges coincident

with reads-from edges across threads. This synchronisation can be used to avoid data

races without the heavy cost of locks and unlocks. Take the example of a data race from

Section 3.2:

int main() {

int x = 0;

{{{ x = 1; ||| r1 = x; }}};

return 0;

}

c:RNA x=0b:WNA x=1

a:WNA x=0

dr

hb hb

Previously, locks and unlocks were placed around the racing accesses, creating

happens-before between the critical sections and avoiding the race. The program be-

low demonstrates how one can use release-acquire synchronisation to prevent the race

using atomic accesses:

int main() {

int x = 0; atomic_int y = 0;

{{{ { x = 1;

y.store(1,release); }

||| { while (y.load(acquire) == 1);

r1 = x; }

}}}

return 0;

}

d:WREL y=1 f:RNA x=1

c:WNA x=1 e:RACQ y=1

sb sb
rf

rf,sw

The fact that an acquire-read is reading from a release write creates the happens-

before edge that avoids the race on x. The release-acquire atomics support programs that

rely on the absence of MP behaviour.

In the Power analogue of this test, there is an lwsync between the writes on the left-

hand thread that forces the writes to be committed and propagate in order. On the right

hand thread, the mapping inserts a dependency followed by an isync barrier, and this

disables the thread-local speculation mechanism. The ARM mapping inserts barriers that

have the same effect, and neither architecture exhibits the relaxed behaviour. The x86

1The ARM V8 architecture includes ld-acq and st-rel instructions. These are strong enough to

implement the C/C++11 release and acquire atomics, but they seem to be stronger than necessary, and

to have worse performance than the implementation suggested here.
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architecture does not exhibit the relaxed behaviour in the MP test. Compilers must not

optimise in a way that makes the relaxed outcome possible.

With all atomics restricted to using release and acquire memory orders, much of the

relaxed behaviour allowed in the previous section is now forbidden. Message-passing has

already been discussed, but the other tests where a reads-from edge failed to provide

ordering are now forbidden as well. In particular, ISA2, WRC, S, LB and SSC are

no longer allowed. In each case, the barriers and dependencies inserted by the compiler

mapping disable out-of-order commitment, out-of-order propagation and read speculation

on the Power and ARM architectures. All other relaxed behaviour (SB, RWC, IRIW, R,

2+2W) is still allowed. Note that some of the remaining relaxed behaviours are no longer

allowed by the hardware, but the language still allows them, 2+2W for instance.

Let us return to the ISA2 litmus test, amending it to use the release and acquire

memory orders, and omitting the dependencies. In this subset of the language, each

reads-from edge becomes a happens-before edge, and happens-before is transitive, so the

write of x in the leftmost thread happens before the read of x in the rightmost thread,

and the read must read the aforementioned write, rather than the initialisation:

int main() {

atomic_int x = 0;

atomic_int y = 0;

atomic_int z = 0;

{{{ { x.store(1,release);

y.store(1,release); }

||| { r1 = y.load(acquire);

z.store(1,release); }

||| { r2 = z.load(acquire);

r3 = x.load(acquire); }

}}}

return 0;

}

d:WREL x=1

e:WREL y=1

h:RACQ z=1f:RACQ y=1

g:WREL z=1 i:RACQ x=1

sb

rf rf

rfsb
sb

Applying the mapping, the Power and ARM versions of this test have a barrier (lwsync

or dmb, respectively) following the stores and a dependency following the loads, so cumu-

lativity forbids the relaxed outcome on the hardware.

The transitivity of happens-before forbids the relaxed behaviour in the WRC litmus

test too, and the Power and ARM mapped versions of the test are forbidden again because

of cumulativity.
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int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ x.store(1,release);

||| { r1 = x.load(acquire);

y.store(1,release); }

||| { r2 = y.load(acquire);

r3 = x.load(acquire); }

}}}

return 0;

}

g:RACQ x=1e:WREL y=1

d:RACQ x=1 f:RACQ y=1c:WREL x=1

hb

rf,hb

hb
rf,hbrf

In the release-acquire analogue of S, the reads-from edge becomes a happens-before

edge, ordering the two writes in happens-before, forcing modification order to agree, and

forbidding the relaxed behaviour.

int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { x.store(2,release);

y.store(1,release); }

||| { r2 = y.load(acquire);

x.store(1,release); }

}}}

return 0;

}

f:WREL x=1d:WREL y=1

e:RACQ y=1c:WREL x=2

hb
mo

hb
rf,hb

In LB and SSC, the two reads-from edges become happens-before edges, completing a

cycle in happens-before. The cycle invalidates the execution: the reads now happen-before

the writes that they read from, a violation of the consistency predicate.

int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { r1 = x.load(acquire);

y.store(1,release); }

||| { r2 = y.load(acquire);

x.store(1,release); }

}}}

return 0;

}

c:RACQ x=1 e:RACQ y=0

f:WREL x=1d:WREL y=1

hb hb

rf,hb

In this model, no new relations have been introduced to the pre-execution or the
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execution witness, and both the consistency predicate and the definition of undefined

behaviour remain the same as in the relaxed-atomic model. The calculated relations do

change, however, to incorporate the new happens-before edges, which are added to the

synchronises-with relation. The new version of the synchronises-with relation is given

below:

let release acquire synchronizes with actions sb asw rf lo a b =

(tid of a ̸= tid of b) ∧

( (* thread sync *)

(a, b) ∈ asw ∨

(* mutex sync *)

(is unlock a ∧ is lock b ∧ (a, b) ∈ lo) ∨

(* rel/acq sync *)

( is release a ∧ is acquire b ∧ (a, b) ∈ rf )

)

Despite the fact that release-acquire programs still allow many sorts of relaxed be-

haviour, the most unintuitive and difficult behaviours have been forbidden. This leaves

the programmer with a much simpler model that can be implemented with higher perfor-

mance than locks.

3.5 Programs with release, acquire and relaxed atomics

Because release and acquire atomics come with additional barriers in the compilation map-

pings, using relaxed accesses where possible will give higher performance on some archi-

tectures. This section presentes the release acquire relaxed memory model, that provides

both relaxed atomics and release-acquire atomics, so that programmers can synchronise

when necessary and use relaxed atomics when not.

3.5.1 Release sequences

The integration of release and acquire memory orders with the relaxed memory order

introduces another level of complexity to the model. So far, the naive combination of

rules from the previous two models would be rather weak, and the target architectures

provide stronger guarantees. Consider the message-passing example from the last section:
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int main() {

int x = 0; atomic_int y = 0;

{{{ { x = 1;

y.store(1,release); }

||| { while (y.load(acquire) == 1);

r1 = x; }

}}}

return 0;

}

d:WREL y=1 f:RNA x=1

c:WNA x=1 e:RACQ y=1

sb sb
rf

rf,sw

On the Power architecture, the compilation mapping places an lwsync barrier above

the write to the atomic location. It is the fact that the barrier occurs between the non-

atomic write and the atomic write that preserves the ordering on the hardware. Inserting

a relaxed write to the same location after the release write gives us the following program

(the rs edge will be explained below):

int main() {

int x = 0; atomic_int y = 0;

{{{ { x = 1;

y.store(1,release);

y.store(1,relaxed); }

||| { r1 = y.load(acquire);

r2 = x; }

}}}

return 0;

}

f:RACQ y=1c:WNA x=1

d:WREL y=1 g:RNA x=1

e:WRLX y=1

sb

sb,rs

rf

rf

sb

The default Power compilation of the two child threads is given below:

stw 1,0(x) lwz r1,0(y)

lwsync cmpw r1,r1

stw 1,0(y) beq LC00

stw 1,0(y) LC00:

isync

lwz r2,0(x)

There is an lwsync barrier above the first write to the atomic location. The lwsync

barrier forces the write to x to be committed and propagated to the other thread before

program-order-later writes, and therefore does not just order the first write to the atomic

location; it serves to order the second write to the atomic location as well. The lwsync

prevents the out-of-order commitment or propagation of the write of x and either write of

y. The branch-control-isync on the second thread inhibits read speculation. Consequently,

it is not possible to see MP relaxed behaviour in the program above. Both ARM and
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x86 also forbid MP relaxed behaviour in this example with their standard compilation

mappings.

C/C++11 provide additional synchronisation to exploit this extra ordering that the

hardware guarantees. The additional synchronisation is accounted for by a new calculated

relation called the release sequence, that for every release-atomic includes some of the

program-order-later writes that follow it. The release sequence relation, drawn as rs in

the previous C/C++11 execution, relates each release to the actions that are part of the

sequence. More precisely, each release-write heads a release sequence that contains a chain

of modification-order-later writes from the same thread. The chain is broken immediately

before the first store from another thread in modification order. This captures some of

the writes that are program-order-after the lwsync in the compiled code.

Read-modify-writes get special treatment in release sequences, complicating the rela-

tion significantly.

The following example illustrates a release sequence that contains a read-modify-write

on another thread. An acquire-read reads from the RMW action — because this write

is in the release sequence of the release write on the leftmost thread, synchronisation is

created between the write-release and the read acquire:

int main() {

int x = 0; atomic_int y = 0;

{{{ { x = 1;

y.store(1,release); }

||| { cas_weak_explicit(&y,1,2,relaxed,relaxed); }

||| { r1 = y.load(acquire);

r2 = x; }

}}}

return 0;

}

d:WREL y=1 g:RNA x=1

e:RMWRLX y=1/2 f:RACQ y=2c:WNA x=1

sb rf,mo,rs

rf

sb

rf

sw

Here, the programmer has used the relaxed memory order with the CAS, so that

on success, the read and write part of the resulting read-modify-write action will have

relaxed semantics. With the above formulation of release-sequence, the acquire load will

not synchronise with the RMW on the middle thread, and the RMW will not synchronise

with the left-hand thread — so far, the release sequence just contains writes from the same

thread as the head. As a consequence, this program would be racy, and its behaviour

undefined.

Contrast this with the behaviour of this program on the usual processors: x86, Power
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and ARM all guarantee that each respective analogous program would see the writes of

x in the right-hand thread in executions where it reads 1 from y. To forbid the relaxed

behaviour in the C/C++11 program, one would have to annotate the middle thread’s CAS

with acquire and release ordering in the event of success. This would induce superfluous

synchronisation, and reduce performance. As a consequence, C/C++11 adds some RMW

actions from other threads to the release sequence.

More precisely, the release sequence includes a contiguous subsequence of modification

order that contains writes from the same thread as the head, and read-modify-writes from

any thread. The sequence terminates before the first non-read-modify-write store on a

different thread in modification order. The formal definitions that describe the release-

sequence relation are given below:

let rs element head a =

(tid of a = tid of head) ∨ is RMW a

let release sequence set actions lk mo =

{ (rel , b) | ∀ rel ∈ actions b ∈ actions |

is release rel ∧

( (b = rel) ∨

( (rel , b) ∈ mo ∧

rs element rel b ∧

∀ c ∈ actions .

((rel , c) ∈ mo ∧ (c, b) ∈ mo) −→ rs element rel c ) ) }

The model that covers this sublanguage makes no changes to the consistency predicate

or undefined behaviour of the model from the previous section, but does make changes

to the calculated relations. A new calculated relation, release-sequences, has been intro-

duced. The release sequence introduces new synchronisation edges, so the definition of

synchronises-with has to change to reflect this. Now, an acquire-read synchronises with

the head of any release sequence that contains the write it reads from. The definition of

synchronises-with below incorporates this change:

let release acquire relaxed synchronizes with actions sb asw rf lo rs a b =

(tid of a ̸= tid of b) ∧

( (* thread sync *)

(a, b) ∈ asw ∨

(* mutex sync *)

(is unlock a ∧ is lock b ∧ (a, b) ∈ lo) ∨

(* rel/acq sync *)

( is release a ∧ is acquire b ∧

(∃ c ∈ actions . (a, c) ∈ rs ∧ (c, b) ∈ rf ) )

)
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Dependencies provide no ordering One might expect dependencies to provide a

similar guarantee to Power and ARM cumulativity in this fragment of the model, but

at the programming language level, the dependencies that one may rely on for ordering

are carefully controlled, and they do not. Observe that ISA2 annotated with the release

memory order on the writer thread, together with source-level dependencies allows the

relaxed behaviour, despite the mapped instructions forbidding it on Power and ARM:

int main() {

atomic_int x = 0;

atomic_int y = 0;

atomic_int z = 0;

{{{ { x.store(1,relaxed);

y.store(1,release); }

||| { r1 = y.load(relaxed);

z.store(1+r1-r1,relaxed); }

||| { r2 = z.load(relaxed);

r3 = (*(&x+r2-r2)).load(relaxed); }

}}}

return 0;

}

g:WRLX z=1

h:RRLX z=1

e:WREL y=1

d:WRLX x=1 f:RRLX y=1

i:RRLX x=1

rf

rf
sb

sb

rf

sb

The WRC test is similar: to allow the compiler to optimise away dependencies, in

C/C++11 a release write together with dependencies is not enough to create ordering,

even though the relaxed behaviour is forbidden for the mapped Power and ARM code.

3.6 Programs with release-acquire fences

In the previous section, release sequences were introduced to allow programmers to write

code that produced fewer barriers on relaxed architectures. The release-sequence mecha-

nism was motivated by the observation that barriers on target architectures need not be

tied to particular memory accesses. The release acquire fenced memory model introduced

in this section goes a step further: it includes fences that expose barrier-style program-

ming directly. The release and acquire fences map directly to barriers on the Power and

ARM processors:

C/C++11 X86 Power ARM Itanium

fence acquire ⟨ignore⟩ lwsync dmb ⟨ignore⟩

fence release ⟨ignore⟩ lwsync dmb ⟨ignore⟩

fence acq rel ⟨ignore⟩ lwsync dmb ⟨ignore⟩
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Release fences In the example in the previous section, relaxed writes in the release

sequence were leveraging the barrier implicit in the head of the release sequence to ensure

ordering. Fences let the programmer explicitly separate the synchronisation from the

memory access. The following example uses explicit release-fence synchronisation:

int main() {

int x = 0; atomic_int y = 0;

{{{ { x = 1;

fence(release);

y.store(1,relaxed); }

||| { r1 = y.load(acquire);

r2 = x; }

}}}

return 0;

}

c:WNA x=1

d:FREL g:RNA x=1

e:WRLX y=1

f:RACQ y=1

sbsb

sb rf

rf

sw

Here the fence is compiled to an lwsync on Power processors or a dmb on ARM, and

the same architectural mechanism that created ordering in the release sequence example

preserves ordering here. In C/C++11, the release fence paired with the relaxed write acts

like a release write — they create a synchronises-with edge to the acquire read on the

right-hand thread, forbidding the read of zero from x.

In a similar way to release writes, release fences provide synchronisation to read-

modify-writes on different threads. The following example shows a release fence synchro-

nising with an acquire read that reads a read-modify-write on another thread:

int main() {

int x = 0; atomic_int y = 0;

{{{ { x = 1;

fence(release);

y.store(1,relaxed); }

||| { cas_weak_explicit(&y,1,2,relaxed,relaxed); }

||| { r1 = y.load(acquire);

r2 = x; }

}}}

return 0;

}

f:RMWRLX y=1/2

d:FREL

g:RACQ y=2

h:RNA x=1

e:WRLX y=1

c:WNA x=1
sb

sb
rf,mo

rf

sbsw

rf
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There is no release sequence in the example above, because there is no release write in

the first thread. The memory model defines a new calculated relation, hypothetical release

sequence, defined below, to describe the synchronisation that results from release fences.

For a given write to an atomic location, the hypothetical release sequence identifies the

actions that would be in the release sequence if the write were a release. Hypothetical

release sequences give rise to synchronisation in the presence of release fences.

let rs element head a =

(tid of a = tid of head) ∨ is RMW a

let hypothetical release sequence set actions lk mo =

{ (a, b) | ∀ a ∈ actions b ∈ actions |

is atomic action a ∧

is write a ∧

( (b = a) ∨

( (a, b) ∈ mo ∧

rs element a b ∧

∀ c ∈ actions .

((a, c) ∈ mo ∧ (c, b) ∈ mo) −→ rs element a c ) ) }

If a release fence is followed in the same thread by the head of a hypothetical release

sequence, and then an acquire action reads from the sequence, then synchronisation is

created from the fence to the acquire. This synchronisation is captured by an updated

version of the synchronises-with calculation, given below. There are three disjuncts cor-

responding to fence synchronisation, and the second covers synchronisation between a

release-fenced write and an acquire read. The other two disjuncts describe the behaviour

of acquire fences, as discussed below.

let release acquire fenced synchronizes with actions sb asw rf lo rs hrs a b =

(tid of a ̸= tid of b) ∧

( (* thread sync *)

(a, b) ∈ asw ∨

(* mutex sync *)

(is unlock a ∧ is lock b ∧ (a, b) ∈ lo) ∨

(* rel/acq sync *)

( is release a ∧ is acquire b ∧

(∃ c ∈ actions . (a, c) ∈ rs ∧ (c, b) ∈ rf ) ) ∨

(* fence synchronisation *)

( is fence a ∧ is release a ∧ is fence b ∧ is acquire b ∧

∃ x ∈ actions z ∈ actions y ∈ actions .

(a, x ) ∈ sb ∧ (x , z ) ∈ hrs ∧ (z , y) ∈ rf ∧ (y , b) ∈ sb) ∨
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( is fence a ∧ is release a ∧ is acquire b ∧

∃ x ∈ actions y ∈ actions .

(a, x ) ∈ sb ∧ (x , y) ∈ hrs ∧ (y , b) ∈ rf ) ∨

( is release a ∧ is fence b ∧ is acquire b ∧

∃ y ∈ actions x ∈ actions .

(a, y) ∈ rs ∧ (y , x ) ∈ rf ∧ (x , b) ∈ sb) )

Note that, unlike memory-order annotations on accesses, one fence can create memory

ordering through many accesses to various locations.

Acquire fences We have seen that release-acquire synchronisation can be used to im-

plement the message-passing programming idiom. Our example used a while loop to check

for the write of a flag variable. Recall the following program and execution:

int main() {

int x = 0; atomic_int y = 0;

{{{ { x = 1;

y.store(1,release); }

||| { while (y.load(acquire) == 1);

r1 = x; }

}}}

return 0;

}

d:WREL y=1 f:RNA x=1

c:WNA x=1 e:RACQ y=1

sb sb
rf

rf,sw

Every iteration of the while loop performs an acquire-read of the flag variable. Acquire

reads lead to the addition of an isync on Power and an isb on ARM each of which

incur some synchronisation cost. It is unfortunate to have to repeatedly incur the cost

of dependencies and barriers when, for synchronisation, only the last read must be an

acquire. In the compiler mappings of Chapter 7, the Power architecture implements

acquire reads as normal reads followed by an artificial control dependency and an isync

barrier — referred to as a ctrl-isync. Unlike the lwsync barrier, discussed in the previous

section, this barrier is tied to the access. Still, we need not have the ctrl-isync barrier

in the loop. We can promote the ctrl-isync to a stronger lwsync barrier, and then we

only need make sure that the barrier falls between the atomic read and the non-atomic

read in order to preserve ordering. On Power, it would be sufficient to perform a single

lwsync barrier after the loop, and before the read of the non-atomic. C/C++11 provides

an acquire fence that allows programmers to do just that. The following program moves

the acquire synchronisation outside of the loop in the standard message-passing idiom:
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int main() {

int x = 0; atomic_int y = 0;

{{{ { x = 1;

y.store(1,release); }

||| { while (y.load(relaxed) == 1);

fence(acquire);

r2 = x; }

}}}

return 0;

}

f:FACQd:WREL y=0

c:WNA x=1

g:RNA x=1

e:RRLX y=0
sb sb

sb

rf

rf

sw

As the execution shows, the acquire fence synchronises with the release write, forbid-

ding MP relaxed behaviour, while performing only low-cost relaxed writes in the body

of the loop. Fence synchronisation is captured in the model by adding new edges to

synchronises-with. This particular edge is added by the last of the fence disjuncts in

the new definition of synchronises-with above. The read y and fence b act together in a

similar way to an acquire read in normal release-acquire synchronisation. More precisely:

a release action a synchronises with an acquire fence b if there are actions x and y such

that x is in the release sequence of a, x is read from by y, and y is sequenced-before b.

Release and acquire fences Release and acquire fences can be used together in the

message-passing example to create synchronisation, as in the following program:

int main() {

int x = 0; atomic_int y = 1;

{{{ { x = 1;

fence(release);

y.store(0,relaxed); }

||| { y.load(relaxed);

fence(acquire);

r1 = x; }

}}}

return 0;

}

d:FREL

h:RNA x=1

c:WNA x=1

g:FACQ

f:RRLX y=0

e:WRLX y=0
rf

sb

sb
rf

sw
sb

sb

The synchronisation is created by the first disjunct of the fence synchronisation part

of synchronises-with above.
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3.7 Programs with SC atomics

Programs written with the relaxed, release and acquire memory orders admit re-

laxed behaviours, so only programs that are correct in the presence of those behaviours

can be written without locks. Recall that relaxed atomics admitted a broad array of re-

laxed behaviours, and release-acquire atomics admit a proper subset of those: SB, RWC,

IRIW, R, 2+2W. For programs that require an absence of any of these relaxed behaviours,

including those that require full sequential consistency, C/C++11 provides the seq cst

(SC) memory order. This section introduces the sc accesses memory model that includes

SC atomic and the SC memory order. The SC atomics are mapped to machine instructions

with explicit synchronisation on all architectures:
nocount

C/C++11 X86 Power ARM Itanium

load seq cst MOV (from memory) hwsync; ld; cmp; bc; isync ldr; dmb ld.acq

store seq cst MOV (into memory), MFENCE hwsync; st dmb; str; dmb st.rel; mf

The following example shows an execution of a program that would admit store-

buffering with relaxed or release-acquire atomics. Here, with the SC memory order, the

relaxed behaviour is forbidden:

int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { x.store(1,seq_cst);

r1 = y.load(seq_cst); }

||| { y.store(1,seq_cst);

r2 = x.load(seq_cst); }

}}}

return 0;

}

d:RSC y=1 f:RSC x=1

e:WSC y=1c:WSC x=1

sb sb

sc

sc

rf,scrf

Returning to the C/C++11 memory model, the execution above displays a new re-

lation over the actions: sc. The sc relation is used to forbid non-sequentially consistent

behaviour over the SC-annotated actions, and it is intended to provide a much stronger

guarantee for full programs: data-race-free programs whose atomic accesses all have the

seq cst memory ordering have no relaxed behaviour — they behave in a sequentially

consistent way.

The sc relation totally orders all actions in the execution of the program that are

annotated with the seq cst memory order. The sc relation must agree with happens-

before and modification order. These requirements are enforced by a new addition to the

consistency predicate, the sc accesses consistent sc conjunct:

let sc accesses consistent sc (Xo, Xw , (“hb”, hb) :: ) =

relation over Xo.actions Xw .sc ∧
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isTransitive Xw .sc ∧

isIrreflexive Xw .sc ∧

∀ a ∈ Xo.actions b ∈ Xo.actions .

((a, b) ∈ Xw .sc −→ ¬ ((b, a) ∈ hb ∪ Xw .mo)) ∧

( ((a, b) ∈ Xw .sc ∨ (b, a) ∈ Xw .sc) =

( (¬ (a = b)) ∧ is seq cst a ∧ is seq cst b)

)

The sc relation is used to restrict the values that may be read by SC reads in another

new conjunct of the consistency predicate, sc accesses sc reads restricted , given below.

This conjunct makes two separate restrictions on SC reads: one for SC reads that read

from SC writes, and another for SC reads that read from non-SC writes.

let sc accesses sc reads restricted (Xo, Xw , (“hb”, hb) :: ) =

∀ (w , r) ∈ Xw .rf . is seq cst r −→

( is seq cst w ∧ (w , r) ∈ Xw .sc ∧

¬ (∃ w ′ ∈ Xo.actions .

is write w ′ ∧ (loc of w = loc of w ′) ∧

(w , w ′) ∈ Xw .sc ∧ (w ′, r) ∈ Xw .sc ) ) ∨

( ¬ (is seq cst w) ∧

¬ (∃ w ′ ∈ Xo.actions .

is write w ′ ∧ (loc of w = loc of w ′) ∧

(w , w ′) ∈ hb ∧ (w ′, r) ∈ Xw .sc ) )

This adds two new restrictions to where SC reads may read from. First, if an SC read,

r, reads from an SC write, w, then w must precede r in sc and there must be no other

sc-intervening write to the same location. Returning to the store-buffering example, note

that this restriction alone is not sufficient to guarantee sequentially consistent behaviour.

Recall the example above:

int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { x.store(1,seq_cst);

r1 = y.load(seq_cst); }

||| { y.store(1,seq_cst);

r2 = x.load(seq_cst); }

}}}

return 0;

}

d:RSC y=1 f:RSC x=1

e:WSC y=1c:WSC x=1

sb sb

sc

sc

rf,scrf

The initialisation of the atomic locations is non-atomic, and non-atomic accesses are

not related by the sc relation, so the first conjunct of sc accesses sc reads restricted does
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not forbid the store-buffering relaxed behaviour. The second part is needed for SC writes

that read from non-SC writes: if w is a non-SC write, then there must not be a write to

the same location that happens after w that is sc-before r. With this restriction, store-

buffering is forbidden, and as we shall see in Chapter 6, DRF programs without loops or

recursion that use only SC atomics do indeed have SC behaviour. This theorem may hold

with a weaker restriction, but the proof approach taken in Chapter 6 requires it.

As well as restricting the reads-from relation, SC atomics introduce synchronisation

in the same way as release and acquire atomics. In order to reflect this, SC atomics are

defined as release and acquire actions in the is release and is acquire functions.

This model has introduced a new relation in the execution witness, as well as conjuncts

of the consistency predicate that restrict the behaviour of SC accesses. All other elements

of the memory model remain unchanged.

3.7.1 Examining the behaviour of the SC atomics

Now that the parts of the model that define the SC atomics have been introduced, we

explore how they forbid the SB, RWC, IRIW, R and 2+2W relaxed behaviours.

Store-Buffering, (SB) We return to the store-buffering example of relaxed behaviour.

In this example, there are two non-atomic (and therefore non-SC) initialisation writes that

happen before all other actions. The rest of the actions in the execution take the seq cst

memory order and are therefore totally ordered by the sc relation. If there is an execution

where both threads read from the initialisation writes, then the program admits store-

buffering relaxed behaviour. This is not possible in this program, because any total order

over the SC actions that agrees with happens-before must order one of the atomic writes

before the read at the same location. This places that write after the initialisation in

happens-before and before the read in sc, so according to sc accesses sc reads restricted ,

the atomic read may not read from the initialisation. The following example shows the

program in question, and an execution that is allowed:

int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { x.store(1,seq_cst);

r1 = y.load(seq_cst); }

||| { y.store(1,seq_cst);

r2 = x.load(seq_cst); }

}}}

return 0;

}

d:RSC y=1 f:RSC x=1

e:WSC y=1c:WSC x=1

sb sb

sc

sc

rf,scrf

As explained in Chapter 2, store buffering is observable on x86 because the architecture
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has thread-local store buffers. We needed to insert MFENCEs on each thread to force the

buffers to flush and disallow the relaxed behaviour. Note that this is precisely what the

compilation mapping specifies for the SC memory order in the test above. For Power and

ARM the sync and dmb barriers specified by the mapping inhibit this behaviour on each.

Read-to-Write Causality, (RWC) When implemented with relaxed or release-

acquire atomics, this program would admit relaxed behaviour where the write on the

first thread is seen by the read on the second, but not seen by the read on the third

thread, despite the read of y taking its value from the earlier write in modification order.

With all SC actions, the values read on the middle and right-hand threads imply an sc

order that orders the actions of the leftmost thread before the middle, and the middle

before the rightmost. Then the initialisation write of x may not be read by the read on

the third thread, and the behaviour is forbidden. The following execution shows this sc

order:

int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ x.store(1,seq_cst);

||| { r1 = x.load(seq_cst);

r2 = y.load(seq_cst); }

||| { y.store(1,seq_cst);

r3 = x.load(seq_cst); }

}}}

return 0;

}

c:WSC x=1 d:RSC x=1

g:RSC x=1e:RSC y=1

f:WSC y=1

sc

sb

sc

sb,sc

rf,sc

rf
rf

The relaxed outcome of this test is forbidden for the mapped program on x86, Power

and ARM.

Independent Reads of Independent Writes (IRIW) With weaker memory orders,

this program produces a relaxed behaviour where the two reading threads see the accesses

of the writing threads in opposite orders, each reading one and then zero. With SC

atomics, the order of the writes is fixed one way or the other by the sc relation, and the

reading threads cannot see the writes in two different orders:
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int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ x.store(1,seq_cst);

||| y.store(1,seq_cst);

||| { r1 = x.load(seq_cst);

r2 = y.load(seq_cst); }

||| { r2 = y.load(seq_cst);

r3 = x.load(seq_cst); }

}}}

return 0;

}

h:RSC x=1

d:WSC y=1 e:RSC x=1 g:RSC y=1c:WSC x=1

f:RSC y=1

sc

sc

sb sb
rf

rf

sc

rf,sc rf,sc

The relaxed outcome of this test is forbidden for the mapped program on x86, Power

and ARM.

R This test checks whether a modification order edge is sufficient to order a write before

a read on a different location. With weaker memory orders it is not, but here sc must

agree with modification order, so ordering is created, forbidding the relaxed behaviour:

int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { x.store(1,seq_cst);

y.store(1,seq_cst); }

||| { y.store(2,seq_cst);

r1 = x.load(seq_cst); }

}}}

return 0;

}

d:WSC y=1

e:WSC y=2

f:RSC x=1

c:WSC x=1

sb sb,sc

sc

sc

rfmo

The relaxed outcome of this test is forbidden for the mapped program on x86, Power

and ARM.

2+2W This program tests whether modification order on one location requires modi-

fication ordering on another location to agree. Release-acquire or relaxed atomics admit

relaxed behaviour for this test. With SC memory actions, the total sc order must agree

with modification order, forbidding the cycle.
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int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { x.store(2,seq_cst);

y.store(1,seq_cst);}

||| { y.store(2,seq_cst);

x.store(1,seq_cst);}

}}}

return 0;

}

d:WSC y=1

e:WSC y=2

f:WSC x=1

c:WSC x=2
sb sb,sc

sc

sc

mo mo

The relaxed outcome of this test is forbidden for the mapped program on x86, Power

and ARM. In fact, Power is stronger than C/C++11 here, and requires only an lwsync

between the writes on each thread rather than a full sync.

3.8 Programs with SC fences

In the compilation mapping, SC atomics have the most expensive implementations, us-

ing stronger explicit synchronisation than the other accesses. As a consequence, using

SC atomic accesses to forbid relaxed behaviours comes with a significant performance

penalty. This section introduces the sc fenced memory model, that includes fences with

the seq cst memory order, allowing the programmer to forbid SB, R and 2+2W in a

more lightweight way. Curiously though, because of details of the Itanium architecture,

liberal use of seq cst fences is not enough to regain full sequential-consistency. The

mapping of SC fences is given below:

C/C++11 X86 Power ARM Itanium

fence seq cst MFENCE hwsync dmb mf

The sequentially consistent fences appear in the sc relation with the rest of

the SC atomics and impose ordering on reads-from and modification order. The

conjunct in the consistency predicate that describes the behaviour of SC fences,

sc fenced sc fences heeded , given below, is split up into six different cases: three cov-

ering fences interacting with reads-from edges, and three covering the interaction with

modification order:

let sc fenced sc fences heeded (Xo, Xw , ) =

∀ f ∈ Xo.actions f ′ ∈ Xo.actions

r ∈ Xo.actions

w ∈ Xo.actions w ′ ∈ Xo.actions .

¬ ( is fence f ∧ is fence f ′ ∧

( (* fence restriction N3291 29.3p4 *)
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( (w , w ′) ∈ Xw .mo ∧

(w ′, f ) ∈ Xw .sc ∧

(f , r) ∈ Xo.sb ∧

(w , r) ∈ Xw .rf ) ∨

(* fence restriction N3291 29.3p5 *)

( (w , w ′) ∈ Xw .mo ∧

(w ′, f ) ∈ Xo.sb ∧

(f , r) ∈ Xw .sc ∧

(w , r) ∈ Xw .rf ) ∨

(* fence restriction N3291 29.3p6 *)

( (w , w ′) ∈ Xw .mo ∧

(w ′, f ) ∈ Xo.sb ∧

(f , f ′) ∈ Xw .sc ∧

(f ′, r) ∈ Xo.sb ∧

(w , r) ∈ Xw .rf ) ∨

(* SC fences impose mo N3291 29.3p7 *)

( (w ′, f ) ∈ Xo.sb ∧

(f , f ′) ∈ Xw .sc ∧

(f ′, w) ∈ Xo.sb ∧

(w , w ′) ∈ Xw .mo ) ∨

(* N3291 29.3p7, w collapsed first write*)

( (w ′, f ) ∈ Xw .sc ∧

(f , w) ∈ Xo.sb ∧

(w , w ′) ∈ Xw .mo ) ∨

(* N3291 29.3p7, w collapsed second write*)

( (w ′, f ) ∈ Xo.sb ∧

(f , w) ∈ Xw .sc ∧

(w , w ′) ∈ Xw .mo ) ) )

First, two fences can be used to restrict modification order: for any fences f and f ′,

and writes w and w′ the consistency predicate requires that there is no cycle with the

following shape (this corresponds to the fourth conjunct of sc fenced sc fences heeded):

d:WRLX x=1

a:WRLX x=2

b:FSC

c:FSC

sb sb

sc

mo

With this rule, SC fences can be used to forbid 2+2W relaxed behaviour, in which

modification order over two locations takes part in a cycle with sequenced-before. The

following program would exhibit 2+2W if it did not have fences in between the writes on

each thread. With the fences, the program does not exhibit the behaviour:
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int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { x.store(2,relaxed);

fence(seq_cst);

y.store(1,relaxed);}

||| { y.store(2,relaxed);

fence(seq_cst);

x.store(1,relaxed);}

}}}

return 0;

}

f:WRLX y=2c:WRLX x=2

d:FSC

h:WRLX x=1

g:FSC

e:WRLX y=1

sb

sb

sb

sb

mo mo

sc

To see that it is forbidden, note that the sc relation is total over the SC actions in the

program, so the fences are ordered one way or the other — left to right in the execution

above. In this case, the modification order edge over the writes to x that would complete

the cycle, from Thread 2 to Thread 1 would also complete a cycle through the sc edge of

the fences, and according to the new restriction, executions with such cycles are forbidden.

Fences also restrict the ordering of rf edges across them in a similar way. In particular,

given fences f and f ′, writes w and w′ and a read r, the following shape is forbidden within

an execution. This corresponds to the first conjunct of sc fenced sc fences heeded .:

d:FSCa:WNA x=0 b:WRLX x=1

e:RRLX x=0c:FSC

mo

rf
sb sc

sb

Here the fact that the fences order the write before the read mean that the read cannot

read from the modification-order-earlier write; it is hidden by the more recent one. This

new restriction on the behaviour of executions with SC fences allows us to forbid store-

buffering. The following program would exhibit store-buffering if the fences were removed,

but with them the relaxed behaviour is forbidden:
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int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { x.store(1,relaxed);

fence(seq_cst);

r1 = y.load(relaxed); }

||| { y.store(1,relaxed);

fence(seq_cst);

r2 = x.load(relaxed); }

}}}

return 0;

}

c:WRLX x=1

e:RRLX y=0

f:WRLX y=1

b:WNA y=0

h:RRLX x=1

a:WNA x=0

g:FSCd:FSC

sb

mo

sb
mo

rf

sb sb

sb

rf

sc

Again, because sc is total, the fences must be ordered one way or the other — left

to right in the execution above. The rf edge that would exhibit the relaxed behaviour in

the execution would also complete the forbidden shape, so executions with the relaxed

behaviour are forbidden by the fences.

The relaxed behaviour R can be forbidden by SC fences, relying on both of the rules

for SC fences. The following program would exhibit R without the fences, but here it is

forbidden:

int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { x.store(1,relaxed);

fence(seq_cst);

y.store(1,relaxed); }

||| { y.store(2,relaxed);

fence(seq_cst);

r1 = x.load(relaxed); }

}}}

return 0;

}

c:WRLX x=1

d:FSC

h:RRLX x=1

a:WNA x=0

g:FSC

f:WRLX y=2

e:WRLX y=1

mo

sb

sb
sc

mo rf

sb

sb

Again we know that the fences are ordered one way or the other in sc — left to right

in the execution above. Depending on which way the fences are ordered, we can invoke

the fence ordering of either modification order or reads-from to forbid the execution that

contains the relaxed behaviour.
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We have seen that SC fences can be used to forbid 2+2W, R and SB, but even inserting

SC fences between every two actions is insufficient to rule out IRIW and RWC. Below is a

consistent execution of an SC-fenced version of the IRIW litmus test. The SC order does

not prevent the relaxed behaviour:

int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ x.store(1,relaxed);

||| y.store(1,relaxed);

||| { r1 = x.load(relaxed);

fence(seq_cst);

r2 = y.load(relaxed); }

||| { r2 = y.load(relaxed);

fence(seq_cst);

r3 = x.load(relaxed); }

}}}

return 0;

}

b:WNA y=0 d:WRLX y=1 h:RRLX y=0

j:RRLX x=1g:RRLX y=1

f:FSC i:FSC

e:RRLX x=0

a:WNA x=0

c:WRLX x=1

sc

rf

rf

mo mo
rfsb

sb

sb sb

sb
rf

It is interesting to note that with the implementation of the SC fences (MFENCE on

x86, sync on Power, and dmb on ARM), inserting a fence between every pair of memory

accesses is sufficient to enforce sequential consistency on x86, Power and ARM. But the

corresponding fence insertion allows relaxed behaviours on C/C++11. This seems to be a

quirk of the language that accommodates an efficient implementation of seq cst fences on

the Itanium architecture [54], although rumour suggests that all Itanium implementations

are stronger and do not exhibit relaxed behaviour with sufficient fences.

Fence rule derivatives The fences provide additional ordering when mixed with SC

accesses of memory. In particular, recall that the consistency predicate forbids the fol-

lowing subgraph:

d:WRLX x=1

a:WRLX x=2

b:FSC

c:FSC

sb sb

sc

mo

If we replace the left-hand thread’s write and fence with a single SC write then we

get the following shape, and the subgraph is still forbidden. This corresponds to the fifth
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conjunct of sc fenced sc fences heeded .:

a:WSC x=2

c:WRLX x=1

b:FSC
sc sb

mo

Similarly, replacing the fence and write on the right hand side leaves a different sub-

graph, and this subgraph is also forbidden. This corresponds to the sixth conjunct of

sc fenced sc fences heeded .:

a:WRLX x=2 c:WSC x=1

b:FSC

sb

sc

mo

Similarly, recall that fences restrict the behaviour of reads-from by forbidding the

following subgraph:

d:FSCa:WNA x=0 b:WRLX x=1

e:RRLX x=0c:FSC

mo

rf
sb sc

sb

The subgraph with the left hand side replaced, corresponding to the second conjunct

of sc fenced sc fences heeded , is forbidden:

a:WNA x=0 c:FSCb:WSC x=1

d:RRLX x=0
rf

sb

mo sc

So is the subgraph with the right hand side replaced, corresponding to the third

conjunct of sc fenced sc fences heeded :

c:FSC

a:WNA x=0 b:WRLX x=1 d:RSC x=0

sc

rf

sb

mo

This model has introduced a new conjunct to the consistency predicate that restricts

the behaviour of programs that use SC fences. All other elements of the memory model

remain unchanged.

3.9 Programs with consume atomics

One of the important distinctions between the semantics of target processor architectures

and the C/C++11 language is the differing treatment of dependencies. On processor

architectures like Power and ARM, dependencies create ordering that forbids some relaxed
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behaviours. In programming these systems, one can sometimes do away with expensive

barriers, and rely on dependencies instead. In C/C++11, these dependencies may be

compiled away because, so far, the memory model has not recognised them.

This section presents the with consume memory model and introduces a new memory

order, consume, that the programmer can use to identify memory reads whose data and

address dependencies should be left in place to provide memory ordering. Consume reads

come with a very low-cost implementation on the Power and ARM architectures: they

are implemented in the same way as relaxed atomic reads — no explicit synchronisation

needs to be inserted. The only cost comes from the restriction that the compiler must

leave all syntactic data and address dependencies of the read in place:

C/C++11 X86 Power ARM Itanium

load consume MOV (from memory) ld + preserve dependencies ldr + preserve dependencies ld.acq

This approach has its limits: take for instance a program with a chain of dependencies

that enters a separately compiled function. Dependencies in this function are required

to provide ordering, so compiler optimisations must preserve all data and address depen-

dencies in all functions that might be called separately, or emit hardware synchronisation

if those dependencies might have been removed. The language provides a function at-

tribute, carries dependency, that the programmer can use to indicate that a function

will be used in a context where its dependency propagation will be taken advantage of.

The preservation of dependencies comes at the cost of restricting some compiler opti-

misations or inserting hardware synchronisation. If a piece of code is never used with a

consume atomic, or the ordering that it would provide is not needed, then the program-

mer can wrap that code with the kill dependency function that tells the compiler to

optimise anyway, losing the ordering guarantee that went with the dependency.

The ordering guarantees provided by the memory model are phrased in terms of the

syntactic dependencies of the program, as calculated by the thread-local semantics, in-

cluding function calls with dependency annotations and excluding dependencies that flow

through calls to kill dependency.

As well as the new language features for controlling dependencies, the addition of

the consume memory order introduces substantial additional complexity to the model:

happens-before, the partial order that provides the closest intuition to a global time

ordering becomes non-transitive.

Dependency and dependency-ordered-before Recall the following program: an

example of a release-write and an acquire-read creating synchronisation. Here we have

synchronisation because the load of y is an acquire, the write of y is a release, and there

is a reads-from edge between the two. The synchronisation that is created is extended

through sequenced-before to order the write of x before the read of x.
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int main() {

int x = 0; atomic_int y = 0;

{{{ { x = 1;

y.store(1,release); }

||| { r1 = y.load(acquire);

r2 = x; }

}}}

return 0;

}

d:WREL y=1 f:RNA x=1

c:WNA x=1 e:RACQ y=1

sb sb
rf

rf,sw

If we change the memory order of the read to be consume instead of acquire, we get

different behaviour: the consume read still creates happens-before from the release write

to the read consume, but happens-before is no longer extended through sequenced-before,

so in the execution, there is no happens-before edge between the write and read of x:

int main() {

int x = 0; atomic_int y = 0;

{{{ { x = 1;

y.store(1,release); }

||| { r1 = y.load(consume);

r2 = x; }

}}}

return 0;

}

e:RCON y=1c:WNA x=1

d:WREL y=1 f:RNA x=0

sb sb

dr

rf,hb,dob

Consume reads provide transitive happens-before ordering only to those actions on the

same thread that have a syntactic dependency on the consume read that is not explicitly

killed, and where parts of the dependency travel through functions, those functions are

annotated as dependency preserving. The following example program forbids message-

passing relaxed behaviour using a release write, a consume-read, and the dependency from

this read to the read of x:

int main() {

int x = 0; atomic_address y = 0;

{{{ { x = 1;

y.store(&x,release); }

||| { int* p;

p = y.load(consume);

r2 = *p; }

}}}

return 0;

}

d:WREL y=x

e:RCON y=x

f:WNA p=x

g:RNA p=x

c:WNA x=1

dob

sb rf,dob sb,cad

sb,rf,cad
dob

The consume atomic obliges the compiler to either emit a barrier, or leave the syntactic
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and address dependencies of the consume-load in place. On the Power and ARM architec-

ture, that would leave an address dependency in place in the compilation of the program

above. This dependency is sufficient to disable the thread-local speculation mechanism

and ensure that the relaxed behaviour is forbidden.

New calculated relations define the limited synchronisation that consume reads pro-

duce. The thread-local semantics identifies syntactic address and data dependencies and

collects them together in the data-dependence relation, dd, that relates read actions to

other memory actions that are dependent on their value (ignoring explicitly killed de-

pendencies, and those that travel through un-annotated functions). A new calculated

relation, carries-a-dependency-to (cad), is defined below as the union of data-dependence

and the thread-local projection of the reads-from relation:

let with consume cad set actions sb dd rf = transitiveClosure ( (rf ∩ sb) ∪ dd )

Release-consume synchronisation is different to release-acquire synchronisation: it is

transitive through the carries-a-dependency-to relation where the compiler is required to

leave dependencies in place (or emit a barrier), but not through sequenced before, where

the lack of dependencies allows reordering on the Power and ARM target architectures.

These new release-to-consume synchronisation edges are called dependency-ordered-before

edges, dob. We have seen the simple case where the consume-read reads directly from a

release write, but the definition of dependency-ordered-before allows the consume to read

from writes in a release sequence in a similar way to the synchronises-with relation. The

definition of dependency-ordered-before, a new calculated relation, is given below:

let with consume dob actions rf rs cad w a =

tid of w ̸= tid of a ∧

∃ w ′ ∈ actions r ∈ actions .

is consume r ∧

(w , w ′) ∈ rs ∧ (w ′, r) ∈ rf ∧

( (r , a) ∈ cad ∨ (r = a) )

The construction of happens-before changes to incorporate these new dependency-

ordered-before edges, and their incomplete transitivity. In this model, happens-before is

constructed in two phases: first, we calculate inter-thread happens-before , ithb, and then

from that we build happens-before.

Inter-thread happens-before, defined below, combines sequenced-before, synchronises-

with and dependency-ordered-before edges, carefully omitting sb edges that transitively

follow dob edges, while preserving all other transitivity. The omitted edges are precisely

those where there is no control or data dependency to provide ordering on the underlying

hardware following a consume atomic.

let inter thread happens before actions sb sw dob =
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let r = sw ∪ dob ∪ (compose sw sb) in

transitiveClosure (r ∪ (compose sb r))

In this model, happens-before, as defined below, is simply inter-thread happens-before

union sequenced before, without the transitive closure.

let happens before actions sb ithb =

sb ∪ ithb

Acyclicity of happens-before Cycles in happens-before are explicitly forbidden by the

model. The consistent hb predicate, given below, forbids cycles in ithb, and consequently

in happens-before.

let consistent hb (Xo, , (“hb”, hb) :: ) =

isIrreflexive (transitiveClosure hb)

Without the consume memory order, it was not necessary to forbid happens-before

cycles explicitly, but with consume, it is possible to construct programs that would give

rise to cycles in happens-before, if not explicitly forbidden. Consider the following load-

buffering litmus test with consume memory orders on the reads:

int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { r1 = x.load(consume);

y.store(1,release); }

||| { r2 = y.load(consume);

x.store(1,release); }

}}}

return 0;

}

f:WREL x=1

e:RCON y=1c:RCON x=1

d:WREL y=1

sb sb

hb hb

rf,dobrf,dob

Here, the consume-reads cause the creation of happens-before edges from the release-

writes, but these edges are not transitive through to the write on the same thread.

Transitivity from sequenced-before to dependency-ordered-before does give read-to-read

happens-before in this example. This generates a cycle in happens-before between the

reads, and this otherwise consistent execution violates consistent hb.

Several new calculated relations have been added in this model, the definition of

happens-before has changed, and the consistency predicate has a new conjunct. The

calculation of undefined behaviour remains the same.

3.10 C/C++11 standard model

This section presents the standard memory model, a memory model with a tight corre-

spondence to the text of the C++11 standard. This comes with downsides: there are
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some elements of the model that are more complicated and difficult to understand than

they need be. In particular, this model includes visible sequences of side effects , repre-

sented in the model by the calculated vsses relation, that restricts the permitted values

of atomic reads.

Visible sequences of side effects are intended to identify the set of writes that a given

atomic read may read from. Earlier revisions of the standard lacked the coherence require-

ments introduced in this chapter. Instead, the restriction imposed by vsses was supposed

to suffice. Unfortunately, there was some confusion about the interpretation of the text

that defined vsses, and some of the interpretations allowed strange behaviours that were

unintended by the standardisation committee (see Chapter 5 for full details). The intro-

duction of the coherence requirements makes the restrictions imposed by visible sequences

of side effects redundant.

Visible sequences of side effects There is one sequence for each atomic read, that is

represented in the model as a relation from members of the visible sequence of side effects

to the read. For a given read, the set includes the modification-order-maximal visible

side effect and the contiguous subsequence of modification-order-later writes, terminating

just before the first write that happens after the read. The definition of the calculated

relation, vsses is given below:

let standard vsses actions lk mo hb vse =

{ (v , r) | ∀ r ∈ actions v ∈ actions head ∈ actions |

is at atomic location lk r ∧ (head , r) ∈ vse ∧

¬ (∃ v ′ ∈ actions . (v ′, r) ∈ vse ∧ (head , v ′) ∈ mo) ∧

( v = head ∨

( (head , v) ∈ mo ∧ ¬ ((r , v) ∈ hb) ∧

∀ w ∈ actions .

((head , w) ∈ mo ∧ (w , v) ∈ mo) −→ ¬ ((r , w) ∈ hb)

)

)

}

The atomic reads-from condition changes to require atomic reads to read from the

visible sequence of effects. The standard consistent atomic rf predicate below captures

this requirement:

let standard consistent atomic rf (Xo, Xw , :: :: :: (“vsses”, vsses) :: ) =

∀ (w , r) ∈ Xw .rf . is at atomic location Xo.lk r ∧ is load r−→

(w , r) ∈ vsses

The following examples illustrate the vsses relation. In the first example, consider

the read on the right hand thread. The write of value 1 is the only visible side effect
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of the read. This write forms the head of the visible sequence of side effects, and is

consequently related to the read by the vsses relation, as are each of the actions in the

contiguous subsequence of modification order that follows the visible side effect, up to,

but not including the first write that happens after the read. The vsses relation in this

execution forbids the load of x from reading from the sb-following write:

int main() {

atomic_int x = 0;

{{{ x.store(2, relaxed);

||| {

x.store(1, relaxed);

r = x.load(relaxed);

x.store(3, relaxed);

}

}}};

return 0;

}

b:WRLX x=2 c:WRLX x=1

a:WNA x=0

e:WRLX x=3

d:RRLX x=1

mo

vsses

mo sb

sb,rf,vse,vsses

asw asw,mo

If there are multiple visible side effects of a given read, then the sequence only starts

at the latest one in modification order. As a consequence, in the following execution, the

store of 1 to x is not in the visible sequence of side effects:

int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ {

x.store(2, relaxed);

y.store(1, release);

}

||| {

x.store(1, relaxed);

r = y.load(acquire);

r = x.load(relaxed);

}

}}};

return 0;

}

c:WRLX x=2

d:WREL y=1

g:RRLX x=2

f:RACQ y=1

e:WRLX x=1

vse

sb

mo

rf,sw

rf,vse,vsses

sb sb
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The vsses relation is added to the calculated relations in this model, and the consistency

predicate has changed. All other elements of the model remain the same.
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Chapter 4

Explore the memory model with

Cppmem

This chapter presents joint work with Scott Owens, Jean Pichon, Susmit Sarkar, and

Peter Sewell.

The memory model presented in this thesis is relatively complex; understanding the

definitions alone is an involved task. As a consequence, calculating the possible outcomes

of small test programs by hand takes some time, and it is difficult to be sure that one has

applied all of the rules correctly throughout every execution. In the early development

of the model, happens-before could be cyclic, there were no coherence guarantees, the

definition of visible-sequences of-side-effects was unclear, and seq cst atomics did not

behave as intended. This meant that incorrect executions were allowed, and calculating

them by hand was time consuming and prone to error.

The model is written in mechanised formal mathematics, and its constituent predicates

are computable, so we can write tools that use the model directly. This chapter describes

Cppmem: an exhaustive execution generator for litmus test programs — given a small

program, it returns all of the possible consistent executions of the program, and identifies

any executions that contain faults. Cppmem presents these executions as graphs, and

can display all of the relations of the model, including faults between actions that cause

undefined behaviour.

Cppmem exhaustively calculates the set of executions, so the user is sure to see every

corner case of their program, but this comes at the cost of speed: Cppmem becomes

unusable on all but the smallest programs. As a consequence, it is of no use for testing

realistic programs, but is useful for probing the memory model, for communication and for

education. In particular, Cppmem has been used to teach masters students the memory

model, it was invaluable during the development of the formal model, when prospective

changes were being discussed and needed to be tested and explained to the standardisation

committee, and it has been used by ARM, Linux and GCC developers to explore the

117
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behaviour of the memory model.

4.1 Architecture

Cppmem calculates the executions of a program in a series of steps that follow the struc-

ture of the memory model:

1. A thread-local semantics is used to calculate a set of pre-executions. Rather than

enumerating a very large set with a pre-execution for every choice of read values, as

in the model, Cppmem calculates pre-executions with symbolic values constrained by

conditionals in the chosen path of control flow.

2. For each pre-execution, the set of possible execution witnesses are enumerated, making

read values concrete where there are reads from edges, creating a set of partially-symbolic

candidate executions.

3. The consistency predicate is used to filter the candidate executions, keeping only those

that are consistent.

4. For each remaining execution pair, all faults are calculated.

Cppmem has a hard-coded thread-local semantics that accepts a very small subset

of the C++11 language — just enough to write simple litmus tests. This thread-local

semantics is embodied in a function that is recursive on program syntax, that is very

similar to the thread-local semantics presented in Appendix 3.1.

The enumeration of execution-witness relations for each pre-execution is intentionally

naive, because the tool is designed to produce all candidate executions; the permutations

of total relations like modification order or SC order are exhaustively enumerated with

no pruning. This allows the user to explore inconsistent executions as well as consistent

ones, but leads to a huge explosion of the search space of the tool, and accounts for its

notably poor performance on programs with more than a handful of SC atomic accesses.

More concretely, in the worst case, for each pre-execution of n actions, there are (n!)2

candidate executions.

A different approach was explored with J. C. Blanchette, T. Weber, S. Owens, and S.

Sarkar [32], where the Nitpick counterexample generator (based on an underlying SAT

solver) was used to find consistent executions of litmus tests. Performance degraded on

tests that only use relaxed atomics, but there was a significant performance improvement

over Cppmem on tests that use the SC atomics. Testing showed that Cppmem scales

well when using relaxed atomics, but when SC atomics are used, tests of 13 actions or

more took longer than 104 seconds to process. On the other hand, Nitpick scaled well on

the SC tests, processing 13-action tests in 40 seconds, and 22 action tests in 977 seconds.
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4.2 Interface

The formal memory model is written in Lem, which is compiled to OCaml code. Cppmem

uses this code in its calculation of executions. A small change to the memory model can

be incorporated into Cppmem by rerunning Lem and recompiling the tool. Cppmem can

even provide a choice of several memory models for comparison.

Cppmem presents executions as graphs — in fact, all of the execution graphs in

this thesis are produced by Cppmem. Together with graphical output, the tool has a

convenient public web interface — we include a screenshot below:

The interface provides several useful features. At the highest level, it comprises four

panels: a program text box (top left), an execution graph (bottom right), a summary of

the calculation of the memory model over the current execution (top right), and a set of

display options for the execution graph (bottom left).

Typical use of the web interface involves choosing a particular memory model from

the radio button list at the top left (preferred corresponds to the with-consume-memory-

model), and then either choosing a program from the drop down menus, or inserting one

in to the text box. Pressing the “run” button causes the enumeration of executions, and

on completion an execution graph of one of the candidate executions will appear in the

bottom right.
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At the top right, there are controls for exploring the enumerated executions. One can

page through the candidate executions, or through the subset of those that is consistent.

Below these controls, there are the predicates of the memory model, with an indication of

whether they hold for the current execution. Each predicate name is a link that points to

generated HTML that presents its definition. The toggle boxes allow the suppression of

each predicate: if the box is un-checked, then the consistent executions are recalculated,

ignoring any unchecked conjuncts.

The toggle boxes at the bottom left allow the user to show or hide relations in the

execution, and the layout radio buttons choose different graph layout algorithms. There

is a toggle box for exporting the Latex output of Cppmem in the execution graph, and

one can edit more detailed display options by clicking the “edit display options” button.

At the bottom right, there are four links to different output files for the execution with

four different file extensions, exc, dot, dsp and tex. The tex file is a Latex compatible

representation of the graph. The dot file is a native format of Graphviz, the graph layout

engine. The dsp file contains the display options that have been chosen. Finally, the

exc file contains a representation of the current execution, and can be used as input

to Cppmem in the left-side text input box by changing its radio button from “C” to

“Execution”.

Command-line batch mode In addition to the web interface, Cppmem has a

command-line interface with a batch mode. This is useful both for printing a number

of tests for display in a document, and for testing collections of tests. Some lightweight

validation of the model was carried out by manually assembling a collection of litmus tests

that follows the key Power and ARM tests, and then comparing the outcomes of those

tests to what is allowed on the underlying processors.



Chapter 5

Design alterations and critique

This chapter discusses problems that were identified in the standard. The problems

include serious omissions of important restrictions, inconsistencies in the definition and

open questions in the design of relaxed-memory languages. We start with problems that

were fixed before the standard was ratified, then discuss problems under consideration for

future revisions, and conclude with remaining problems and open questions.

5.1 Acyclicity of happens-before

In early revisions of the standard, happens-before could be cyclic in some executions.

This violated the core intuition of the model, and much of the consistency predicate

did not make sense in the presence of a cycle. Without this restriction, the standard

model from the previous chapter does admit executions with happens-before cycles. The

standardisation committee was surprised to learn that cycles were allowed, and certainly

did not intend to allow them.

The following example program and execution was discovered when considering the

semantics of consume atomics. The execution below is undesirable because it has a cycle

in happens-before, arising from the use of consume atomics.

The execution features load-buffering behaviour, but here the loads are annotated with

consume memory orders and the stores take release order. As a consequence, dependency-

ordered-before edges are generated from the stores to the loads, but they do not transi-

tively carry through sequenced-before due to the lack of dependency:
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int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { r1 = y.load(consume);

x.store(1, release); }

||| { r2 = x.load(consume);

y.store(1, release); }

}}}

return 0;

}

f:WREL x=1

e:RCON y=1c:RCON x=1

d:WREL y=1

sb sb

hb hb

rf,dobrf,dob

Recall the definition of inter-thread-happens-before from the standard model:

let inter thread happens before actions sb sw dob =

let r = sw ∪ dob ∪ (compose sw sb) in

transitiveClosure (r ∪ (compose sb r))

Happens-before is not transitive from dependency-ordered-before edges to sequenced

before edges. This lack of transitivity stops the writes from being ordered after the reads at

the same location (which would make the execution inconsistent). However,dependency-

ordered-before edges are transitive through the composition of a sequenced before edge

and another dependency-ordered-before edge, so in the example above, each read is related

to the other in happens-before, and there is a cycle.

The issue was first highlighted in report N3125 [73] to WG21 for C++, and was taken

to a meeting as a comment by the Great Britain national body: issue 10 from N3102 [51].

The comment suggested adding the following text to Section 1.10:

1.10p12

[. . . ]The implementation shall ensure that no program execution demonstrates a

cycle in the ”happens before” relation. [ Note: This would otherwise be possible

only through the use of consume operations. — end note ]

This change was accepted before ratification of C++11, and subsequently made its

way into WG14 Defect Report #401 [22] for C, and was proposed for inclusion in a

Technical Corrigendum. The issue is now marked as closed by WG14 [1], but it has not

yet appeared in a C11 Technical Corrigendum
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5.2 Coherence axioms

Early versions of the standard lack the CoWR and CoRW coherence requirements de-

scribed in Section 3.3 and listed in Section 1.10p15-18 of the standard, and left CoWW

coherence implicit in the definition of modification order. They rely on the restrictions

imposed by visible-sequences-of-side-effects and an absence of CoRR coherence violations

to dictate which writes a particular read can consistently read from. The corresponding

memory model is essentially the same as the model presented in the last chapter, except

imposing only the CoRR and CoWW parts of the coherent memory use requirement.

Depending on one’s interpretation of the standard, the new coherence restrictions

either make the memory model more restrictive, or they leave the model equivalent. The

text in question is from paragraph 1.10p14, the definition of visible-sequence-of-side-

effects:

1.10p14

The visible sequence of side effects on an atomic object M , with respect to a value

computation B of M , is a maximal contiguous subsequence of side effects in the

modification order of M , where the first side effect is visible with respect to B, and

for every side effect, it is not the case that B happens before it. The value of an

atomic object M , as determined by evaluation B, shall be the value stored by some

operation in the visible sequence of M with respect to B. [. . . ]

The ambiguity here is the sense in which the word “maximal” is used in the first

sentence. Is this the maximal subsequence by inclusion, is it the sequence that is begun

by the maximal visible-side-effect in modification order, or does it mean that the sequence

must extend as far as possible from a given visible side effect? This question was posed

to the standardisation committee at the very beginning of the process of formalisation.

They replied that they meant maximal-by-inclusion. As a consequence, early models used

this interpretation, and comments suggesting clarification of this, and the other uses of

the word maximal throughout the standard were included in many documents submitted

to the standardisation committee [29, 20, 74, 51, 83, 24]. In retrospect, and despite the

response of the standardisation committee, this interpretation seems flawed.

Firstly, the standard uses precisely the same phrase in the definition of release se-

quences:

1.10p6
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A release sequence headed by a release operation A on an atomic object M is

a maximal contiguous subsequence of side effects in the modification order of M ,

where the first operation is A, and every subsequent operation

• is performed by the same thread that performed A, or

• is an atomic read-modify-write operation.

Here, the committee was clear that they mean that the sequence should extend as far

as possible in modification order for a given release.

Secondly, if the visible sequences of side effects of a particular read include the

maximal-length subsequence, according to 1.10p14, then some perverse executions are

permitted. The following example would be allowed with the maximal-length interpreta-

tion of 1.10p14, and without enforcing the CoRW and CoWR coherence requirements:

int main() {

atomic_int x = 0;

{{{ { x.store(1,relaxed); }

||| { x.store(2,relaxed);

r1 = x.load(relaxed);

r2 = x.load(relaxed);

}

}}}

return 0;

}

c:WRLX x=2b:WRLX x=1

e:RRLX x=2

d:RRLX x=0
rf,vsses

mo

vsses
sb

sb,vsses

vsses

Here, the initialisation write acts as the visible side effect that heads a visible sequence

of side effects that contains both of the atomic writes. The loads each read from writes

in their visible sequence of side effects, in accordance with CoRR coherence.

This execution is perverse: from the perspective of the second thread, it writes the

location x, but fails to see that write locally, reading a modification-order-earlier write to

the same location. This execution contains a CoWR coherence violation between actions

b, c and d. The x86, Power and ARM architectures all forbid violations of CoWR coher-

ence (in fact the coherence requirements follow hardware coherence [16], with thread-local

program order replaced by happens-before), and allowing the compiler to reorder actions

c and d would seem perverse. Furthermore, discussion with the C++11 standardisation

committee suggested that they do not intend to allow this sort of execution [111].

This execution would not be allowed if we take the other interpretation of maximal

in 1.10p14: the visible sequence of side effects starts at the modification-order-maximal
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visible side effect. Whichever interpretation one takes, the addition of the coherence

axioms allows us to do away with visible sequences of side effects, and the confusion that

they introduce. The coherence axioms neatly describe the intent of the standardisation

committee, and even the models with visible sequences of side-effects impose both CoRR

and CoWW coherence.

I suggested that the standardisation committee adopt the CoWR and CoRW coherence

requirements, and that they make the CoWW requirement explicit. The changes to the

wording of section 1.10 were suggested in N3136 [111], and are now part of the published

standard. The change added the following text to Section 1.10:

1.10p15–1.10p20

If an operation A that modifies an atomic object M happens before an operation

B that modifies M , then A shall be earlier than B in the modification order of M .

[ Note: This requirement is known as write-write coherence. — end note]

If a value computation A of an atomic object M happens before a value compu-

tation B of M , and A takes its value from a side effect X on M , then the value

computed by B shall either be the value stored by X or the value stored by a side

effect Y on M , where Y follows X in the modification order of M . [Note: This

requirement is known as read-read coherence. — end note ]

If a value computation A of an atomic object M happens before an operation B

on M , then A shall take its value from a side effect X on M , where X precedes B

in the modification order of M . [Note: This requirement is known as read-write

coherence. — end note ]

If a side effect X on an atomic object M happens before a value computation B

of M , then the evaluation B shall take its value from X or from a side effect Y

that follows X in the modification order of M . [Note: This requirement is known

as write-read coherence. — end note ]

[ Note: The four preceding coherence requirements effectively disallow compiler

reordering of atomic operations to a single object, even if both operations are

relaxed loads. This effectively makes the cache coherence guarantee provided by

most hardware available to C++ atomic operations. — end note ]
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[ Note: The visible sequence of side effects depends on the “happens before” re-

lation, which depends on the values observed by loads of atomics, which we are

restricting here. The intended reading is that there must exist an association of

atomic loads with modifications they observe that, together with suitably chosen

modification orders and the “happens before” relation derived as described above,

satisfy the resulting constraints as imposed here. — end note ]

5.3 Visible sequences of side effects are redundant

Chapter 6 will describe mechanised proofs of a set of equivalences over the formal models

of Chapter 3. One of the results will show that visible sequences of side effects are made

redundant by the addition of the coherence axioms. This fact was presented to the C

and C++ standardisation committees, and they both saw the value in the substantial

simplification afforded by simply removing visible sequences of side effects. In C, Defect

Report 406 [24] suggests this change, and in C++, the issue was raised in N3833 [9] and

was incorporated into the draft of the next standard in N3914 [82]. The change to the

wording is the same for both languages; the passage that defines the sequences is replaced

with the following:

The value of an atomic object M, as determined by evaluation B, shall be the value

stored by some side effect A that modifies M, where B does not happen before A.

In the model, the standard consistent rf predicate is replaced with:

let consistent atomic rf (Xo, Xw , (“hb”, hb) :: ) =

∀ (w , r) ∈ Xw .rf . is at atomic location Xo.lk r ∧ is load r −→

¬ ((r , w) ∈ hb)

5.4 Erroneous claim of sequential consistency

The standard makes the claim that data-race-free programs whose atomics are all anno-

tated with the seq cst memory order will exhibit sequentially consistent behaviour:

29.3p8
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[ Note: memory order seq cst ensures sequential consistency only for a program

that is free of data races and uses exclusively memory order seq cst operations.

[. . . ]— end note ]

This property, articulated by Boehm and Adve [37], is central to the design of the

memory model: programmers ought to be able to use a simplified model if they do not

wish to use the more complicated high-performance concurrency features. Unfortunately,

this claim was false before the introduction of the second disjunct in the implication of

the sc accesses sc reads restricted predicate:

let sc accesses sc reads restricted (Xo, Xw , (“hb”, hb) :: ) =

∀ (w , r) ∈ Xw .rf . is seq cst r −→

( is seq cst w ∧ (w , r) ∈ Xw .sc ∧

¬ (∃ w ′ ∈ Xo.actions .

is write w ′ ∧ (loc of w = loc of w ′) ∧

(w , w ′) ∈ Xw .sc ∧ (w ′, r) ∈ Xw .sc ) ) ∨

( ¬ (is seq cst w) ∧

¬ (∃ w ′ ∈ Xo.actions .

is write w ′ ∧ (loc of w = loc of w ′) ∧

(w , w ′) ∈ hb ∧ (w ′, r) ∈ Xw .sc ) )

This part of the predicate restricts reads annotated with the seq cst memory order

that read from writes that are not annotated with the seq cst memory order. Such reads

must not read from a write that happens before an SC write to the same location that

precedes the read in SC order.

Without this restriction, the model allows executions that are direct counterexamples

of the theorem from 29.3p8. The example below (discovered when attempting a prove

the theorem), is the familiar store-buffering example, with all atomic accesses annotated

with the seq cst memory order. In the execution on the right, the reads read from the

initialisation writes despite the strong choice of memory order.
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int main() {

atomic_int x = 0; atomic_int y = 0;

{{{ { x.store(1,seq_cst);

r1 = y.load(seq_cst);

}

||| { y.store(1,seq_cst);

r2 = x.load(seq_cst);

}

}}}

return 0;

}

e:WSC y=1

d:RSC y=1

c:WSC x=1

f:RSC x=1b:WNA y=0

a:WNA x=0
sbsb

mo

mo
sc

sc

sbrf,sc
rf

This execution exhibits non-sequentially consistent behaviour, so for the model with-

out the additional restriction on SC reads, this serves as a counterexample to the claim

in the standard. Early drafts of the standard made this claim of sequentially consistent

behaviour yet failed to restrict seq cst reads on non-seq cst writes sufficiently.

The counterexample to the claim of sequential-consistency was presented in POPL [28],

and I discussed possible solutions with members of the C++11 standardisation committee.

The conclusion of that discussion was then summarised by Hans Boehm in issue 2034 of

the defect report N3822 [80], including a change of wording to paragraph 29.3p3 of the

standard. The layout of the text was then refined in N3278 [45] into the form that exists

in the published standard. The changes added the second bullet of the list in 29.3p3:

29.3p3

There shall be a single total order S on all memory order seq cst operations, con-

sistent with the “happens before” order and modification orders for all affected

locations, such that each memory order seq cst operation B that loads a value

from an atomic object M observes one of the following values:

• the result of the last modification A of M that precedes B in S, if it exists, or

• if A exists, the result of some modification of M in the visible sequence of side

effects with respect to B that is not memory order seq cst and that does not

happen before A, or

• if A does not exist, the result of some modification of M in the visible sequence

of side effects with respect to B that is not memory order seq cst.

This solution is sufficient to return sequential consistency to programs that use only

seq cst atomics with some additional restrictions. This property is expressed formally in
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Lem with a mechanised proof in HOL, and is presented in detail in Chapter 6, formally

validating this central design goal of the memory model.

This solution restricts seq cst reads from non-seq cst writes using the happens-

before relation. This is sufficient to provide sequentially consistent behaviour to some

programs, as desired, but it is a weaker than it might be, and is not symmetrical with

the restrictions on seq cst fences. Recall that seq cst fences restrict the reads-from

relation, forbidding reads that follow a seq cst fence in sequenced before from reading

a modification order predecessor of earlier seq cst writes. The restriction on seq cst

imposed in 29.3p3 is weaker, formulating its restriction with happens-before rather than

modification order. If the model were strengthened to use modification order here, it

could be simplified, and the compilation mappings of Chapter 2 would remain correct.

5.5 Missing SC-fence restrictions

As discussed in Chapter 3, the standard seems to miss some restrictions on execu-

tions that use SC fences. The additional restrictions are imposed in the model in the

sc fenced sc fences heeded predicate.

Discussions with the C and C++ standardisation committees have been positive, and

they believe these restrictions were simply omitted. C Defect Report #407 [21], and

C++11 Defect Report issue 2130 [23] include the suggestion that the following two pas-

sages are added to the standard:

For atomic modifications A and B of an atomic object M , if there is a

memory order seq cst fence X such that A is sequenced before X, and X pre-

cedes B in S, then B occurs later than A in the modification order of M .

For atomic modifications A and B of an atomic object M , if there is a

memory order seq cst fence Y such that Y is sequenced before B, and A pre-

cedes Y in S, then B occurs later than A in the modification order of M .

Following discussion and redrafting the change has been accepted for incorporation in

the draft of the next revision of the C++ standard [23].
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5.6 Undefined loops

In C/C++11 programmers are required to avoid programs that have undefined behaviour,

and in return the standard carefully defines how the remaining programs will behave. In

this way, undefined behaviour becomes a set of restrictions on the sorts of program that

can be written in the language. On the whole, the standard is relatively fair, and programs

with undefined behaviour are programs one would not wish to write. Paragraph 1.10p24

goes further, and forbids a whole host of useful programs:

1.10p24

The implementation may assume that any thread will eventually do one of the

following:

• terminate,

• make a call to a library I/O function,

• access or modify a volatile object, or

• perform a synchronization operation or an atomic operation.

[Note: This is intended to allow compiler transformations such as removal of empty

loops, even when termination cannot be proven. — end note ]

Although it does not explicitly use the words “undefined behaviour”, this paragraph

requires programmers to make sure their programs meet the criteria. There is no explicit

definition of the behaviour of a program that does not meet this requirement, and Sec-

tion 1.3.24 of the C++11 standard makes it clear (as did the standardisation committee)

that such programs have undefined behaviour:

1.3.24

[. . . ]Undefined behavior may be expected when this International Standard omits

any explicit definition of behavior or when a program uses an erroneous construct

or erroneous data.[. . . ]

Unfortunately, this stops the programmer from writing many reasonable programs,

and is likely to provide undefined behaviour to many existing programs. For example:

imagine a proof assistant that is asked to prove an assertion that is in fact false. In

some executions, this proof assistant will get lost in a never-ending search for a proof, as

they are wont to do. If in its search, it performs no calls to library I/O, does not access a
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volatile object, and performs no synchronisation or atomic accesses, then returning “true”

is a behaviour that conforms to the standard. This is perverse.

Despite protests, this paragraph remains in the standard. It is a monument to the

importance the standardisation committee places on sequential compiler optimisations.

The paragraph exists to enable the optimiser to move code across loops without the need

to prove that they terminate. This is a pragmatic position: a standard that required

major changes to existing compilers or harmed performance would simply be ignored. It

is unfortunate that the specification does not model the intended behaviour here, and

instead provides undefined behaviour. This leaves the specification sound, but it means

we cannot use it to reason about some reasonable programs.

5.7 Release writes are weaker than they might be

The semantics of release writes is largely provided by the definition of release sequences,

the relation that allows reads from modification-order-later writes to synchronise with

prior release writes. The implementability of this synchronisation mechanism relies on

details of the Power and ARM processors that happen to provide more ordering than the

language exploits. Consider the following example that will illustrate this discrepancy:

int main() {

int x = 0; atomic_int y = 0;

{{{ { x = 1;

y.store(1,release);

y.store(2,relaxed); }

||| { y.store(3,relaxed); }

||| { y.load(acquire);

r1 = x; }

}}}

return 0;

}

c:WNA x=1 f:WRLX y=3

e:WRLX y=2

d:WREL y=1 h:RNA x=1

g:RACQ y=2
sb

sb,mo

sb

rf

rf

mo
sw

We will consider several executions of this program. The first is the execution above

where Thread 3 reads from the relaxed write on Thread 1 and the write on Thread 2 is

not modification-order-between the release and the relaxed writes on thread 1. In this

execution, the relaxed write on Thread 1 is in the release sequence of the release write,

the acquire load synchronises with the release on Thread 1, and there is no data race.

The correct behaviour is guaranteed on the Power architecture because the compiler will

insert an lwsync barrier before the release write, and that will ensure propagation of the

non-atomic write before the later atomic writes on Thread 1.
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Next consider the execution below where the write on Thread 2 intervenes in modi-

fication order between the release and relaxed writes on Thread 1, and the acquire load

reads the relaxed store on Thread 1.

e:WRLX y=2

g:RACQ y=2f:WRLX y=3

d:WREL y=1 h:RNA x=0

c:WNA x=1
sb

sb
mo

rf

mo

sb

dr

Now the release sequence terminates before the store on Thread 2, there is no syn-

chronisation, and there is a race between the non-atomic load and store. The same

architectural mechanism that ensured the correct behaviour in the previous execution

still applies here, so the behaviour of this program on Power will be the same as the first

execution, where there was synchronisation. The C/C++11 memory model is weaker here

than it need be: release sequences could be extended to include all program-order-later

writes.

There is another way in which release writes are weaker than their implementation on

processors. On Power, it is sufficient to place lwsync barriers between the writes in the

2+2W test, an addition that corresponds to making the second write on each thread a

release:

int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { x.store(2,release);

y.store(1,release);}

||| { y.store(2,release);

x.store(1,release);}

}}}

return 0;

}

f:WREL x=1

c:WREL x=2

d:WREL y=1

e:WREL y=2

momo
sb sb

The relaxed behaviour is allowed in C/C++11, and it is necessary to annotate all

writes with the seq cst memory order to forbid the behaviour. It is not clear whether

programmers rely on the absence of this behaviour, but if they do, strengthening the

treatment of release writes would be important for performance.

5.8 Carries-a-dependency-to may be too strong

The memory model extends the dependency-ordered-before relation, that captures syn-

chronisation through consume atomics, through the dependencies captured by the carries-
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a-dependency-to relation. cad. The cad relation, described in Chapter 3 and Appendix A,

captures syntactic dependency in the program. The definition allows programmers to in-

sert false dependencies into their program as in the following example program:

int main() {

int x = 0;

atomic_int y = 0;

{{{ { x = 1;

y.store(1,release); }

||| { r1 = y.load(consume);

r2 = *(&x ^ r1 ^ r1); }

}}}

return 0;

}

Although the definition of syntactic dependency in the standard is very clear, compilers

can easily recognise this sort of dependency as false, and might optimise it away. Program-

mers of Linux are not intended to use purely syntactic dependency to enforce ordering,

but rather a richer notion of dependency that does not recognise false dependencies. The

following section discusses another repercussion of the treatment of dependencies in the

standard.

5.9 The use of consume with release fences

The standard does not define synchronisation resulting from the combination of release

fences and consume atomics. As a consequence, the formal model does not include such

synchronisation. The most economical way of making writes engage in synchronisation

is to use release fences. Consume-reads are the cheapest way to synchronise reads. The

ability to combine the two would enable the programmer to write synchronised code with

less overhead. This seems like an oversight rather than a design decision. A future report

to the standardisation committee will suggest wording that provides this synchronisation.

5.10 Thin-air values: an outstanding language design problem

In formalising the C/C++11 memory model, I revealed serious problems with the specifi-

cation, suggested solutions to many of them, and those have been adopted by the language

specification. However, there is one major problem outstanding: thin-air values.

The problem of how to restrict thin-air values in relaxed-memory-model programming

languages is a difficult one, and an old one. Much of the complication of the Java memory

model was intended to solve a similar problem, but gave rise to a complicated, and
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ultimately faulty specification (see Section 5.10.3). In this chapter we explain the problem

as precisely as possible, we show that the restriction of thin-air values in C/C++11

invalidates the accepted implementations of atomic accesses, and we explore alternative

solutions, making some concrete suggestions.

5.10.1 Thin-air values, informally

Precisely defining thin-air values is the very problem that the language faces, so instead

of a definition of the term, this chapter offers a series of examples that explore the design

space for the memory model’s restriction of thin-air values. Before the first example of an

execution with a thin-air value, recall the load-buffering test, repeated below. The model

allows the read in each thread to read from the write in the other, completing a cycle in

sb union rf. This behaviour is not only allowed by the C/C++11 memory model, it is

also permitted for analogous programs on both the ARM and IBM Power architectures,

and observable on ARM processors. If load buffering were forbidden by the language, the

lightweight implementations of relaxed accesses would have to be strengthened for Power

and ARM.

int main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { r1 = x.load(relaxed);

y.store(1,relaxed); }

||| { r2 = y.load(relaxed);

x.store(1,relaxed); }

}}}

return 0;

}

c:RRLX x=1 e:RRLX y=1

d:WRLX y=1 f:WRLX x=1

sb sb

rf rf

Allowed by Power and ARM architectures, and observed on ARM,

so C/C++11 should allow this.

Many of the examples of thin-air values in this section will, at their core, contain

the cyclic shape of this load-buffering execution. The first example of a thin-air value,

LB+data+data, augments the basic load-buffering program by adding data-dependencies

from the writes to the reads in each thread:
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int main() {

atomic_int x = 0;

atomic_int y = 0;

int a1,a2;

{{{ { a1 = x.load(relaxed);

y.store(a1,relaxed); }

||| { a2 = y.load(relaxed);

x.store(a2,relaxed); }

}}}

return 0;

}

j:WRLX x=42

c:RRLX x=42

f:WRLX y=42

g:RRLX y=42
sb sb

rf rf

Forbidden by x86, Power and ARM architectures. C/C++11 should forbid this.

As the formal model stands, any single value may be read by the two atomic reads.

The designers of the memory model intend this execution of the program to be forbidden,

and the standard imposes a restriction in 29.3p9 that is intended to forbid this sort of

execution. In fact, in 29.3p10 the standard says explicitly that 29.3p9 forbids it:

29.3p10

[...]

// Thread 1:

r1 = y.load(memory order relaxed);

x.store(r1, memory order relaxed);

// Thread 2:

r2 = x.load(memory order relaxed);

y.store(r2, memory order relaxed);

[29.3p9 implies that this] may not produce r1 = r2 = 42 [...]

This execution of the program violates programmer intuition: the fact that the written

value is dependent on the read value implies a causal relationship, as do the reads-from

edges. Together these edges form a cycle, and that cycle is what seems to violate intuition

and separate this from more benign executions. Analogous programs on x86, Power and

ARM processors would all forbid this execution, and the standard explicitly forbids this

execution. Moreover, allowing executions of this sort for some types, pointers for example,

would allow us to write programs that violate run-time invariants by, say, forging pointers

— see Section 5.10.3 for a discussion of Java’s safety guarantees in the context of the thin-
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air problem. It seems clear then that this sort of thin-air execution should be forbidden.

There is already a notion of dependency that captures that present above: the data-

dependency relation, dd. One might imagine a restriction that forbade cycles in the union

of dd and rf. It would be formulated as a new conjunct of the consistency predicate:

let thin air1 (Xo, Xw , ) = isIrreflexive (transitiveClosure (dd ∪ rf ))

The execution above would be forbidden by this new conjunct, but there are other

facets of the out-of-thin-air problem that it would not fix. For example, in 29.3p11, the

standard expresses a desire (not a requirement) that control dependencies should, under

certain circumstances, forbid similar executions:

29.3p11

[ Note: The requirements do allow r1 == r2 == 42 in the following example, with

x and y initially zero:

// Thread 1:

r1 = x.load(memory order relaxed);

if (r1 == 42)

xx y.store(r1, memory order relaxed);

// Thread 2:

r2 = y.load(memory order relaxed);

if (r2 == 42)

xx x.store(42,memory order relaxed);

However, implementations should not allow such behavior. — end note ]

In the example, we call the execution that ends with r1 == r2 == 42 a self-satisfying

conditional : the conditional statements are mutually satisfied. Self-satisfying conditionals

are another sort of thin-air value, and they are at the core of the current problems with the

language. Allowing self satisfying conditionals harms compositionally (See Chapter 8),

but as we shall see, forbidding them is not straightforward.

29.3p11 is a note. Notes have no force, but are typically used for instructive examples,

or further exposition of the normative text. In this case, the note includes an instruction

to implementers: they “should” not allow such behaviour. The word “should” carries

a specific definition in the context of an ISO standard, and means that the sentence
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imposes no restriction. Instead, this prose expresses a convention that the memory model

designers wish implementers to follow, but that programmers should not rely on. The

designers do not want programmers to have to consider such executions, and seem to be

abusing the word “should” to avoid providing a complete specification. This unhappy

state of affairs is an admission that the designers do not know how to solve the problem

of out-of-thin-air-values.

If we apply our prospective thin-air restriction to the example above, we see that

there is no cycle in dd union rf, but if there were a relation that captured syntactic

control dependency, cd, then the execution that produced r1 == r2 == 42 would have a

cycle in rf and cd. Of the two examples of thin-air values above, the first involves passing

a value through a cycle that includes data-dependencies, and the second involves a cycle

including control dependencies. If all of those dependencies were captured in a single

relation, dep, then both executions would easily be forbidden by disallowing cycles in the

union of dep and rf in a new conjunct of the consistency predicate:

let thin air2 (Xo, Xw , ) = isIrreflexive (transitiveClosure (dep ∪ rf ))

At first, this solution seems reasonable. The memory models of typical target hardware

architectures do forbid such cycles, so if a C/C++11 program were translated to analogous

machine code for a given processor, then no executions with out-of-thin-air-values would

be observed.

Unfortunately, forbidding dependency cycles at the language level has serious draw-

backs. The users of the C and C++ languages have come to expect high performance,

and compiler optimisations make a significant contribution to that end. Consider how

forbidding dependency cycles at the language specification level might be implemented:

the compiler might preserve all data and control dependencies so that executions resulting

from dependency cycles at the language level would translate to executions with depen-

dency cycles on the hardware, where they would be forbidden. Then, any optimisation

that removes dependencies would be forbidden, including well used optimisations like

hoisting out of a loop, or common subexpression elimination. Understandably, forbidding

optimisations is an anathema to the standardisation committee, so preservation of all

dependencies in compilation is not a viable proposal.

The thin-air restriction should allow compiler optimisations over concurrent code, but

optimisation of relaxed atomic accesses will interact with that restriction. We look at

an example of a program with relaxed atomics where the compiler might optimise. The

program below has an if-statement where either branch will write forty-two:
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void main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { r1 = x.load(relaxed); \\ reads 42

if (r1 == 42)

y.store(r1,relaxed);

}

||| { r2 = y.load(relaxed); \\ reads 42

if (r2 == 42)

x.store(42,relaxed);

else

x.store(42,relaxed);

}

}}}

}

Forbidden by x86, Power and ARM

architectures.

Allowed on hardware with thread-local

optimisations.

C/C++11 should allow this.

It seems that a compiler should be allowed to optimise this program by replacing

the if-statement in Thread 2 with a single write, removing the control dependency, and

transforming the program into the one below:

void main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { r1 = x.load(relaxed); \\ reads 42

if (r1 == 42)

y.store(r1,relaxed);

}

||| { r2 = y.load(relaxed); \\ reads 42

x.store(42,relaxed);

}

}}}

}

Allowed by Power and ARM architectures.

C/C++11 should allow this.

The analogue of the optimised execution would be allowed to read forty-two in both
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threads according to the Power and ARM architectures, so the language must permit that

execution. Therefore, in order to permit the optimisation, the thin-air restriction must

allow the relaxed behaviour in the original program. Contrast the un-optimised program

above with the example from 29.3p11 in the standard, repeated below:

void main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { r1 = x.load(relaxed); \\ reads 42

if (r1 == 42)

y.store(r1,relaxed);

}

||| { r2 = y.load(relaxed); \\ reads 42

if (r2 == 42)

x.store(42,relaxed);

}

}}}

}

Forbidden by x86, Power and ARM

architectures.

Forbidden on hardware with thread-local

optimisations.

Allowing this breaks compositional reasoning.

C/C++11 should forbid this.

The execution where both writes see forty-two is intended to be forbidden, but that

execution is identical to the execution of the previous program, where we might optimise.

This brings out a subtle point about dependencies: some of them should be respected

and preserved, like the ones in 29.3p11, and others should be ignored in order to permit

compiler optimisations. Moreover, we cannot decide which dependencies to respect at the

level of a single execution. That is a significant observation, because the rest of the mem-

ory model describes the behaviour of single executions. This means the problem cannot be

solved by simply adding another conjunct to the consistency predicate; the solution will

need to use information from the wider context of the program. In fact, Section 5.10.4

will show that the standard’s current thin-air restriction (phrased as another conjunct

of the consistency predicate) is broken. First, we describe some possible solutions, and

consider Java’s approach.
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5.10.2 Possible solutions

One could have the optimiser leave dependencies in place only where there might be a

dependency cycle. That might appear to be reasonable: dependency cycles can only

exist between atomic accesses that are given the weakest memory order parameters, and

such accesses within a program are likely to be rare. The problem is that compilation

is not a whole program affair. Instead, parts of the program are compiled separately

and then linked together. This can lead to optimisations removing dependencies from

some functions, only for those functions to be placed in a dependency cycle. Consider the

following example where the function f is compiled in a separate compilation unit:

void f(int a, int* b) {

if (a == 42)

*b = 42;

else

*b = 42;

}

void main() {

atomic_int x = 0;

atomic_int y = 0;

{{{ { r1 = x.load(relaxed); \\ reads 42

f(r1,&r2);

y.store(r2,relaxed);

}

||| { r3 = y.load(relaxed); \\ reads 42

f(r3,&r4);

x.store(r4,relaxed);

}

}}}

}

Forbidden by x86, Power and ARM

architectures.

C/C++11 should forbid this.

This execution of the program contains a dependency cycle, and would be forbidden by

the naive thin-air restriction. At the stage where f is compiled, the compiler cannot know

whether f will be used in a context where its dependency matters, so the compiler would

be forbidden from optimising. This suggests that simply forbidding dependency cycles

would come at a cost to performance: compilers would be forced to preserve dependencies

in the compilation of most functions. This is assumed to be too great a cost, so the
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thin-air restriction ought to be weaker than forbidding all syntactic dependency cycles.

Although out-of-thin-air values have not been precisely defined, it is clear that the

designers of the memory model intend some executions featuring thin-air values to be

forbidden, so some additional restriction is necessary. It is also clear that the weaker that

condition is, the fewer optimisations it will forbid. To produce a viable thin-air restriction,

one must identify which dependencies must be preserved in an execution. There seem to

be two parties who could be given this task, one is the specification designer, and the

other is the programmer.

The specification chooses the dependencies Suppose the specification is to select

the dependencies that are to be respected in the execution of a program. A natural way

to do this would be to introduce a new relation, dep, that captures precisely these edges.

Then, the consistency predicate can be augmented so that it forbids executions with cycles

in dep union rf. The choice of the dep relation could range from the empty set, so that

thin-air values are allowed, to all syntactic dependencies, so that dependency removing

optimisations are forbidden — the ideal is somewhere in between.

One might imagine a specification that identifies false dependencies between reads and

writes by performing a thread-local analysis, in much the same way a compiler does. The

thread-local analysis would then be tightly coupled to which compiler optimisations were

allowed. If more elaborate whole-program optimisations were to be permitted, then the

dependency analysis would have to take place on the whole program instead. One would

have to take care not to simply build into the specification a set of compiler optimisations

that are allowed. This would both complicate the specification and hamstring the opti-

miser. Instead, one should try to abstract the effect of reasonable optimisations in such

a way that would allow future optimisations.

The programmer chooses the dependencies Another approach would be to have

the programmer choose which dependencies are to be respected, and collect those in the

dep relation. The consistency predicate would again gain a conjunct forbidding cycles in

dep union rf. Compilers would be obliged to leave any dependencies between dep-related

actions in place. The hardware would then forbid thin-air values that result from dep-

annotated dependency cycles. These annotations could be attached to functions, so in

the previous example, we would annotate f with a dependency edge from argument a to

argument b. Then the thin air execution would have a dependency cycle, and could be

forbidden in the consistency predicate.

Programs that lack enough annotation would simply permit thin-air behaviour. This

might seem reasonable: Java needed to restrict thin-air values to satisfy its security

guarantees, and here there are none. Providing well-defined behaviour to programs with

thin-air values does come at a cost however: such programs must be compiled faithfully,

so this choice acts as a constraint on optimisations and implementation choices. If instead
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programs with thin-air values were undefined, the optimiser would be able to rely on their

absence.

To stop the specification from allowing thin-air values, a new kind of undefined be-

haviour could be introduced to require programmers to sufficiently annotate their pro-

grams. Thin-air values could be made a cause of undefined behaviour. This brings us

back to the difficult problem of defining thin-air values, but in this case it would be a

reasonable approximation to define them as cycles in syntactic dependency union rf in

consistent executions.

This approach would be easy for the programmer to understand, but there are several

potential pitfalls. First, all programs with cycles between relaxed atomics in syntactic

dependency union rf would have to be annotated, and optimising such programs would

be forbidden. This would forbid reasonable optimisations of atomic accesses, but not

non-atomics. Second, this suggestion would be unacceptable if it required annotation of

much more code outside of the concurrency library, yet the previous example makes it

clear that wider annotation could well be required. It may be that concurrency libraries

rarely ever pass values to their clients without synchronising, in which case annotating

dependencies in the client would be unnecessary. The suitability of this approach hinges

on what sort of concurrent code programmers will write.

The solutions proposed here all have drawbacks, and none has support from the de-

signers of the C/C++11 specifications.

5.10.3 Java encountered similar problems

In many ways the Java memory model attempts to solve the same problems as the

C/C++11 memory model: to facilitate efficient implementation on various relaxed mem-

ory processors at the same time as permitting compilers to optimise. At its highest

level, the Java memory model is similar to the drfSC memory model: in the absence of

races, Java provides sequentially consistent behaviour. There is a key difference however:

the treatment of program faults like races. C/C++11 can simply provide faulty pro-

grams with undefined behaviour, whereas Java’s security guarantees require that faulty

programs receive well-defined behaviour that preserves said guarantees. One of those se-

curity guarantees requires that references only be accessible by parts of the program that

have explicitly been given the reference — a disparate part of the program should not

be able to conjure up a reference out of thin air. Consider the following example, taken

from Manson’s thesis [69]. In this example, the program has a data race that threatens

to produce a reference out of thin air:

Initially, x = null, y = null

o is an object with a field f that refers to o
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Thread1 Thread~2

r1 = x; r3 = y;

r2 = x.f; x = r4;

y = r2;

r1 == r2 == o is not an acceptable behaviour

This program has a race and does not execute in a sequentially consistent model, but

rather the relaxed model that Java provides to racy programs. Even so, the memory model

must forbid the execution in which the object o is read, in order to preserve Java’s security

guarantees. On the other hand, the relaxed memory model does allow load-buffering

behaviour in racy programs; to do otherwise would require stronger implementations,

reducing performance on relaxed hardware. The Java memory model is therefore faced

with the same thin-air problem as C/C++11: how can a memory model that allows

load-buffering behaviour forbid thin-air values while permitting compiler optimisations?

At the core of the Java memory model is an analogue of the C/C++11 consistency

predicate, albiet with fewer constraints, permitting all reads to read from happens-before-

unrelated writes like atomic reads may in C/C++11. The constraint on the analogue of

the reads-from relation is so lax, in fact, that Java permits executions that contain the

coherence violation shapes. Valid executions must satisfy this consistency predicate, as

well as an intricate out of thin air condition.

Thin-air values are forbidden by allowing only executions where one can incrementally

build up a happens-before-down-closed prefix of the execution, so that in the limit, all of

the execution’s actions are covered. Actions are committed to this prefix one-by-one by

showing the existence at each step of a similar justifying execution that is allowed by a

slightly stronger version of the memory model. In this sequence of justifying executions,

each execution must share the same actions and relations over the prefix as the execution

in the limit, but may differ dramatically otherwise. Entirely different control flow choices

might be made by parts of the justifying execution outside of the prefix. The model that

judges these justifying executions strengthens the consistency predicate by requiring that

reads outside of the prefix read from a write that happens before them.

If Java has a well-formed thin-air restriction, then why should C/C++11 not simply

adopt it? There are two reasons: firstly, there are optimisations that Java’s solution

does not permit that should be allowed. Oracle’s own Hotspot compiler violates the

Java memory model by performing disallowed compiler optimisations [101]. Secondly, the

model is difficult to reason about: in order to understand how a program might behave,

one must imagine a sequence of justifying executions, each potentially very different and

diverging further and further from an original, more constrained execution. If one wants

to check whether a particular execution is allowed or not, it is a matter of judging whether

such a sequence exists.
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Java introduces a great deal of complication attempting to solve the thin-air problem,

but it is ultimately unsuccessful. The C/C++11 memory model ought to be a simpler

case — there are no security guarantees to satisfy, and conventions can be imposed on the

programmer, with undefined behaviour if they are ignored. The next section shows that

the restriction that is included in C/C++11 does restricts some executions that must be

allowed.

5.10.4 The standard’s thin-air restriction is broken

The thin air restriction imposed by the standard is given in 29.3p9:

29.3p9

An atomic store shall only store a value that has been computed from constants and

program input values by a finite sequence of program evaluations, such that each

evaluation observes the values of variables as computed by the last prior assignment

in the sequence. The ordering of evaluations in this sequence shall be such that:

• if an evaluation B observes a value computed by A in a different thread, then

B does not happen before A, and

• if an evaluation A is included in the sequence, then every evaluation that

assigns to the same variable and happens before A is included.

This text was added very early in the development of the standard, and survives

unchanged since its introduction to drafts in 2007 [34]. The standard provides examples

that illustrate the application of the restriction in 29.3p10:

29.3p10

[ Note: The second requirement disallows “out-of-thin-air” or “speculative” stores

of atomics when relaxed atomics are used. Since unordered operations are involved,

evaluations may appear in this sequence out of thread order. For example, with x

and y initially zero,
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// Thread 1:

r1 = y.load(memory order relaxed)

x.store(r1, memory order relaxed);

// Thread 2:

r2 = x.load(memory order relaxed);

y.store(42, memory order relaxed);

is allowed to produce r1 = r2 = 42. The sequence of evaluations justifying this

consists of:

y.store(42, memory order relaxed);

r1 = y.load(memory order relaxed);

x.store(r1, memory order relaxed);

r2 = x.load(memory order relaxed);

On the other hand,

// Thread 1:

r1 = y.load(memory order relaxed);

x.store(r1, memory order relaxed);

// Thread 2:

r2 = x.load(memory order relaxed);

y.store(r2, memory order relaxed);

may not produce r1 = r2 = 42, since there is no sequence of evaluations that

results in the computation of 42. In the absence of “relaxed” operations and

read-modify-write operations with weaker than memory order acq rel ordering,

the second requirement has no impact. — end note ]

There are several problems with this restriction. First of all, by the admission of

the standard itself in 29.3p11, it is weaker than intended. Secondly, this requirement is

incorrectly phrased in terms of evaluations rather than memory accesses. Perhaps more

fatally, this requirement imposes a restriction that would not be satisfied by the industry-

standard implementation of the atomic reads and writes on Power processors: a stronger

implementation would be needed, decreasing performance. To see that this is the case,

consider the following program and execution:



146

int main() {

atomic_int x = 2;

atomic_int y = 2;

atomic_int z = 0;

atomic_int* A[3] = {&x,&y,&z};

int r1,r2,r3,r4,r5,r6,sum;

{{{ { x.store(1,relaxed); // write y index

y.store(1,relaxed); } // write y index

||| { y.store(0,relaxed); // write x index

x.store(0,relaxed); } // write x index

||| { r1 = y.load(relaxed); // read y index

r2 = (A[r1])->load(relaxed); // read x index

r3 = (A[r2])->load(relaxed); // read x index

r4 = (A[r3])->load(relaxed); } // read y index

||| { r5 = x.load(relaxed); // read y index

r6 = (A[r5])->load(relaxed); } // read y index

}}};

sum = 100000*r1 + 10000*r2 + 1000*r3 + 100*r4 + 10*r5 + r6

z.store(sum,relaxed);

return 0;

}

g:WRLX x=1

h:WRLX y=1

i:WRLX y=0

j:WRLX x=0

k:RRLX y=1

l:RRLX y=0

m:RRLX x=0

n:RRLX x=1

o:RRLX x=1

p:RRLX y=1

mosb sb sbsb

sb

sb

mo

This program gives rise to an execution where Thread 1 and 2 produce 2+2W be-

haviour, a cycle in sb union mo. Two other threads are reading from this cycle: Thread 3

reads the writes in the order of the cycle, from Thread 1’s write of y to its write of x, and

Thread 4 reads Thread 1’s write of x and then its write of y. Threads 3 and 4 both have

address dependencies between each pair of reads in the sequence. After the threads have

completed, there is a write of z whose value is calculated from all of the previous reads.

Now we shall try to find a sequence of evaluations that satisfies 29.3p9 for the store

to location z. The value stored to z is computed from all of the values read in Threads 3

and 4, so the reads in those threads must be in the sequence, as must the writes that they

read from in Threads 1 and 2. Note that the dependencies between the reads in Threads

3 and 4 mean that the ordering in the threads must be preserved in the sequence. Each

read must read from the most recent write in the sequence, so we can start to work out
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some constraints. Thread 3 requires the writes to appear in the following order in the

sequence: y=1, y=0, x=0, x=1. This contradicts the values that are read on Thread 4,

which reads x=1, and then reads y=1, so this execution violates 29.3p9, and should be

forbidden.

Using the industry standard mapping of C/C++11 atomic accesses to Power accesses,

this execution of the program is allowed, so in order to forbid it, a stronger choice of

implementation would be necessary. This is a clear indication that 29.3p9 is too strong a

restriction, that it is not what the designers intended, and that the treatment of thin-air

values in the standard is broken.
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Chapter 6

Model meta-theory

This chapter relates the models of Chapter 3 to one another, setting out the conditions

under which one can eschew the complexity of a richer model in favour of a simpler one.

These relationships take the form of theorems over the Lem definitions of the memory

model (see Appendix C), all shown to hold in HOL4 (the proof scripts can be found at the

thesis web page [2]), that state the condition that a program must satisfy in order to have

equivalence between two models. In most cases of equivalence, this condition is simply

the stronger model condition, but in one case there is no need for a model condition, and

in another, neither model condition subsumes the other. The following directed graph

represents the model equivalences, with directed edges corresponding to the subsumption

of model conditions. The edge that points in both directions corresponds to a direct

equality of the model conditions, and the undirected edge requires a condition stronger

than either model condition.

149
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standard model

with consume

T. 1

sc fenced

T. 2

sc accesses

T. 3

release acquire sc

T. 9

release acquire fenced

T. 4

sc only

T. 27

release acquire relaxed

T. 5

relaxed only

T. 6

release acquire

T. 28

locks only

T. 7

single thread

T. 8

T. 12

T. 10

total

T. 13

T. 29

T. 11

The equivalences provide several useful results. Theorem 1 shows that part of the

specification is redundant, as it is subsumed by the rest of the model. The rest of the

equivalences show that one can consider a simpler model if the program does not use all

of the features of the model. Theorems 1, 2, 9, 12 and 13 establish one of the design

goals of the language, for a restricted set of programs, without loops or recursion. This

is the design goal described by Boehm and Adve [37]: data-race-free code that uses only

regular reads and writes, locks, and the sequentially-consistent atomic accessor functions

will execute with sequentially consistent semantics.

The chapter begins with a precise formulation of what it means for two models to

be equivalent, and then, using the graph above to organise the structure, presents the

equivalence results and key insights from the proofs. These results are presented in three

paths through the graph, highlighted in blue red and green below:
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standard model

with consume

T. 1

sc fenced

T. 2

sc accesses

T. 3

release acquire sc

T. 9

release acquire fenced

T. 4

sc only

T. 27

release acquire relaxed

T. 5

relaxed only

T. 6

release acquire

T. 28

locks only

T. 7

single thread

T. 8

T. 12

T. 10

total

T. 13

T. 29

T. 11

The blue path starts with a proof that visible sequences of side effects are redundant,

in Section 6.2 and then contains a sequence of increasingly simple models that apply to

smaller and smaller sublanguages, in Section 6.3. The proofs of the equivalences that the

blue path represents are all relatively straightforward: reducing the set of features covered

by each sublanguage makes the machinery that governed the unused features redundant.

The green path considers sublanguages without relaxed atomics. This simplifies the

memory model significantly: the model no longer needs to keep track of release sequences,

and thin-air behaviour is not allowed. The proofs of equivalence in this section are more

involved: we must show that any happens-before edge that is induced by reading from a

release sequence is covered by other happens-before edges in the execution.

The red path includes the analogue of the result described by Boehm and Adve [37], es-

tablished for programs without loops or recursion over the full C/C++11 memory model:

data-race-free programs that use only the SC atomics, locks and non-atomic accesses have

SC behaviour. The proof of this relationship is the most involved in this chapter.

6.1 Defining the equivalence of models

The behaviour of a program according to one of the memory models given in Chapter 3

is either a set of candidate executions or undefined behaviour. Intuitively, two models are

equivalent if, for any program, they either both produce the same set of candidate execu-
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tions, or they both produce undefined behaviour. The type of candidate executions may

differ between two models: they may use different calculated relations in their consistency

judgement, or even different relations in their execution witness. There are, however, ele-

ments of the type of candidate executions that remain the same; both the pre-execution,

that describes the actions of one path of control flow, and the reads-from relation are

common across all models. Together these elements of the candidate execution represent

a reasonable notion of the observable interaction with memory. A candidate execution

X is a triple comprised of a pre-execution, an execution witness, and a list of calculated

relations. The function below projects the pre-execution and the reads-from relation:

let rf observable filter X = {(Xo, Xw .rf ) | ∃ rl . (Xo, Xw , rl) ∈ X }

As it happens, most of the models share the same execution witness, and can be

related by a stronger notion of equivalence. For these models the filter that projects the

entire execution witness is used:

let observable filter X = {(Xo, Xw) | ∃ rl . (Xo, Xw , rl) ∈ X }

These projections are used to construct a function that generates the observable be-

haviour of a given program when run under a specific model. Each function produces

either a set of projected executions, or a constant denoting undefined behaviour. The

first produces the behaviour for the reads-from projection, with an arbitrary memory

model taken as a parameter:

let rf behaviour M condition opsem (p : program) =

let consistent executions =

{ (Xo, Xw , rl) |

opsem p Xo ∧

apply tree M .consistent (Xo, Xw , rl) ∧

rl = M .relation calculation Xo Xw } in

if condition consistent executions ∧

∀ X ∈ consistent executions .

each empty M .undefined X

then rf Defined (rf observable filter consistent executions)

else rf Undefined

The second produces the behaviour of the more precise projection that retains the

whole execution witness:

let behaviour M condition opsem (p : program) =

let consistent executions =

{ (Xo, Xw , rl) |
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opsem p Xo ∧

apply tree M .consistent (Xo, Xw , rl) ∧

rl = M .relation calculation Xo Xw } in

if condition consistent executions ∧

∀ X ∈ consistent executions .

each empty M .undefined X

then Defined (observable filter consistent executions)

else Undefined

Each of the equivalence results share a similar form: under some condition cond over

the operational semantics and the program, the modelsM1 andM2, with model conditions

P1 and P2 are equivalent. Here, equivalence is expressed as the equality of behaviour for

any thread-local semantics and program:

( ∀ opsem p.

cond opsem p −→

(rf behaviour M1 P1 opsem p = rf behaviour M2 P2 opsem p))

6.2 Visible sequences of side effects are redundant in the standard

The first equivalence is between the standard memory model (§3.10), and the

with consume memory model (§3.9). This equivalence simplifies the memory model pre-

sented in the standard by showing that a complicated part of the specification is redun-

dant and can be omitted to no ill-effect. Throughout this chapter, each result from the

overview graph will be presented with the edge from the overview that represents the

equivalence, the detailed formulation of the necessary condition for the equivalence, and

the equivalence result itself. In this case, the equivalence applies to all programs and

choices of operational semantics, so there is no necessary condition, and the more precise

equivalence that uses the full execution-witness projection is used:

Theorem 1.

standard model

with consume

(∀ opsem p.

(behaviour with consume memory model true condition opsem p =

behaviour standard memory model true condition opsem p))

When proving this equivalence, it is useful to note that the two memory models differ

very little: the undefined behaviour, calculated relations and consistency predicates of
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the two models are almost identical. The only difference is the inclusion in the stan-

dard memory model model of the calculated relation, standard vsses, identifying the visi-

ble sequences of side effects of each atomic load, and an accompanying requirement that

atomic loads read from a predecessor in this relation. This relation was introduced in

Section 3.10, and is justified with text from the standard in Appendix A. It is intended to

represent the set of writes that a particular read may read from. Chapter 5 argues that

the language used to define it in the standard is ambiguous, and it does not achieve its

goal of identifying the precise set of writes that may be read from. Recall the definition

of visible sequences of side effects:

let standard vsses actions lk mo hb vse =

{ (v , r) | ∀ r ∈ actions v ∈ actions head ∈ actions |

is at atomic location lk r ∧ (head , r) ∈ vse ∧

¬ (∃ v ′ ∈ actions . (v ′, r) ∈ vse ∧ (head , v ′) ∈ mo) ∧

( v = head ∨

( (head , v) ∈ mo ∧ ¬ ((r , v) ∈ hb) ∧

∀ w ∈ actions .

((head , w) ∈ mo ∧ (w , v) ∈ mo) −→ ¬ ((r , w) ∈ hb)

)

)

}

This relation creates edges to each read at an atomic location from each visible side

effect, and from all modification order successors of those visible side effects up to, but not

including (recall that hb is acyclic) any writes that happen after the read. The consistency

predicate then requires that atomic loads read from one of the writes that this relation

identifies:

let standard consistent atomic rf (Xo, Xw , :: :: :: (“vsses”, vsses) :: ) =

∀ (w , r) ∈ Xw .rf . is at atomic location Xo.lk r ∧ is load r−→

(w , r) ∈ vsses

This conjunct of the consistency predicate is made redundant by the coherence axioms,

which forbid executions that contain any of the shapes below:

b:WRLX x=1

c:WRLX x=2 e:RRLX x=1

d:RRLX x=2

mo hb
rf

rf
d:RRLX x=1

b:WRLX x=1 c:WRLX x=2
mo

rf hb

d:WRLX x=1

b:WRLX x=2 c:RRLX x=2
rf

hb
mo

b:WRLX x=2

a:WRLX x=1

mo hb
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The with consume memory model omits the requirement that atomic loads read from

a write related by standard vsses, and instead requires only that atomic loads do not read

a later write in happens-before.

We prove that for any execution, the consistency predicates have the same outcome.

Because the calculation of undefined behaviour has not changed, this property implies the

equality of the behaviour of the two models. We split the equality of outcome into two

implications.

Standard-model consistency implies simplified-model consistency It is clear

that any consistent execution in the standard memory model is a consistent execution in

the with consume memory model, because the new restriction on atomic loads is already

enforced (standard vsses does not relate writes to loads that happen after them).

Simplified-model consistency implies standard-model consistency It remains

to show that any consistent execution in the with consume memory model is a consistent

execution in the standard memory model.

Suppose, seeking a contradiction, that there is a consistent execution in

the with consume memory model that is not a consistent execution in the stan-

dard memory model. That execution must fail the consistency predicate in the stan-

dard memory model by violating the standard consistent atomic rf conjunct. Then there

is an edge in rf relating an action, w, to a load at an atomic location, r, but the rf edge

is not coincident with a standard vsses edge. The rest of the consistency predicate holds,

so the rf edge implies that w is a write at the same location as r.

Now, we identify an action v that is related to r by standard vsses, forming a contra-

diction. The existence of the rf edge from w to r implies the existence of a visible side

effect, v of r by the det read conjunct of the consistency predicate. If v and w are not

equal, then (v, w) must be in mo, otherwise v would happen before r, by the definition of

visible side effect, and (w, v) would be in mo, by consistency of of mo, and there would be

a CoWR coherence violation. So far, we have identified the following actions and edges:

v:WRLX x=1

r:RRLX x=3

w:WRLX x=3

mo

vse

rf

Now seek the mo-maximal element of a set, A, containing the visible side effects of r

that are either equal to w or appear earlier in mo. Certainly v is a member of A so the

set is non-empty. In addition, A is a subset of the prefix of w union the singleton set w.

Consistency implies both that modification order is acyclic, and that it has finite prefixes,

so we know that A is finite. Then the non-empty finite set A has a maximal element,
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h, in the acyclic relation mo. The visible side effect h is then either equal to w, or is an

mo-maximal mo-predecessor of w.

r:RRLX x=3

w:WRLX x=3 h:WRLX x=2

v:WRLX x=1

mo

vse

vserf

Returning to the definition of standard vsses, we show that w is related to r with the

head action h. Note that h has no mo-later visible side-effects, otherwise there would be a

CoWR coherence violation between that side-effect, w and r. We have that (r, w) is not in

happens-before from the consistency predicate of the with consume memory model. For

any mo-intervening action, w′, between h and w, if there is a happens-before edge from

r to w′ then that edge completes a CoRW cycle between r, w′ and w. All together, this

implies that h is related to r by standard vsses, a contradiction, proving the equivalence

holds, and showing that visible sequences of side-effects are a needless complication in an

already intricate memory model.

6.3 Avoid advanced features for a simpler model

The equivalences presented in this section are collected together because their necessary

conditions are simple: they restrict the use of concurrency features, and make no other

restrictions on programs. The proofs of these equivalences are correspondingly straight-

forward. The graph below shows the sequence of equivalences covered in this section in

the context of the rest of the results:
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standard model

with consume

T. 1

sc fenced

T. 2

sc accesses

T. 3

release acquire sc

T. 9

release acquire fenced

T. 4

sc only

T. 27

release acquire relaxed

T. 5

relaxed only

T. 6

release acquire

T. 28

locks only

T. 7

single thread

T. 8

T. 12

T. 10

total

T. 13

T. 29

T. 11

The sequence of equivalences will start from the simplified

with consume memory model that imposes no restrictions on programs, and remove

features one step at a time, eventually reaching the single thread memory model.

Programs without consume atomics This equivalence relates the simplified model

from the previous section, with consume memory model, presented formally in Sec-

tion 3.9, to a model for programs that do not use the consume memory order, the

sc fenced memory model from Section 3.8. The model condition requires that programs

do not use the consume memory order:

let sc fenced condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .

∀ a ∈ Xo.actions .

match a with

| Lock → true

| Unlock → true

| Load mo → (mo ∈ {NA, Acquire, Relaxed, Seq cst})

| Store mo → (mo ∈ {NA, Release, Relaxed, Seq cst})
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| RMW mo → (mo ∈ {Acq rel, Acquire, Release, Relaxed, Seq cst})

| Fence mo → (mo ∈ {Release, Acquire, Relaxed, Seq cst})

| Blocked rmw → true

end

Theorem 2.

with consume

sc fenced

(∀ opsem p.

statically satisfied sc fenced condition opsem p −→

(behaviour sc fenced memory model sc fenced condition opsem p =

behaviour with consume memory model true condition opsem p))

The consume memory order provides language-level synchronisation without requiring

the insertion of a hardware barrier on the Power and ARM architectures. It was introduced

in Section 3.9, adding significant complexity to the C/C++11 memory model. Without

it, happens-before would be far simpler to formulate, and would be transitive — an

important property for a relation that evokes a temporal intuition. Happens-before is

defined with auxiliary definitions in the with consume memory model, with additional

calculated relations cad and dob.

The purpose of this complexity is to define happens-before edges resulting from con-

sume reads as transitive only in the presence of thread-local dependency, dd. In the

with consume memory model model, happens-before is defined as follows:

let inter thread happens before actions sb sw dob =

let r = sw ∪ dob ∪ (compose sw sb) in

transitiveClosure (r ∪ (compose sb r))

let happens before actions sb ithb =

sb ∪ ithb

Without any consume actions, the calculated relation dob is empty, and the relatively

complicated definitions of inter thread happens before and happens before above can be

simplified to the following:

let no consume hb sb sw =

transitiveClosure (sb ∪ sw)

We will show that this simplified version of happens-before is equivalent to the more

complicated version above. It is straightforward that the simplified version is a superset

of the more complex definition, so for equivalence, it remains to show that any edge in

no consume hb is also present in happens before. The HOL4 proof proceeds by considering
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each edge in no consume hb as a path of edges that alternate between sb and sw edges.

Any path made up entirely of sb edges in a consistent execution is itself an sb edge,

because sb is transitive, and is part of happens before. Any path made up of sw edges is

a path of edges in the relation r from the definition of inter thread happens before, and

is also in happens before. Similarly, any path that alternates between sb and sw, starting

with an sw edge, is in r and happens before. Paths that start with an sb edge are included

by the union of the composition of sb and sw edges from inter thread happens before. This

covers all possible edges in no consume hb, so the relations are equal.

The sc fenced memory model shares the same undefined behaviour and consistency

predicate as the with consume memory model, but its calculated relations are simpler,

omitting cad and dob and taking the simpler version of happens-before presented above.

Programs without SC fences The next equivalence, between the

sc fenced memory model from Section 3.8 and the sc accesses memory model from

Section 3.7, applies to programs that do not use fences with the seq cst memory order:

let sc accesses condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .

∀ a ∈ Xo.actions .

match a with

| Lock → true

| Unlock → true

| Load mo → (mo ∈ {NA, Acquire, Relaxed, Seq cst})

| Store mo → (mo ∈ {NA, Release, Relaxed, Seq cst})

| RMW mo → (mo ∈ {Acq rel, Acquire, Release, Relaxed, Seq cst})

| Fence mo → (mo ∈ {Release, Acquire, Relaxed})

| Blocked rmw → true

end

Theorem 3.

sc fenced

sc accesses

(∀ opsem p.

statically satisfied sc accesses condition opsem p −→

(behaviour sc accesses memory model sc accesses condition opsem p =

behaviour sc fenced memory model sc fenced condition opsem p))

The sc accesses memory model expresses the semantics of such programs, simplifying

the sc fenced memory model by removing the sc fenced sc fences heeded conjunct from

the consistency predicate. The sc fenced sc fences heeded conjunct imposes no restriction

on programs that do not feature SC fences, and the rest of the model is the same, so

proving equivalence of the two models is trivial.
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Programs without SC atomics Removing all SC atomics permits further simplifica-

tion of the memory model. The release acquire fenced memory model, from Section 3.6,

is equivalent to the sc accesses memory model, from Section 3.7, in the absence of SC

atomics:

let release acquire fenced condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .

∀ a ∈ Xo.actions .

match a with

| Lock → true

| Unlock → true

| Load mo → (mo ∈ {NA, Acquire, Relaxed})

| Store mo → (mo ∈ {NA, Release, Relaxed})

| RMW mo → (mo ∈ {Acq rel, Acquire, Release, Relaxed})

| Fence mo → (mo ∈ {Release, Acquire, Relaxed})

| Blocked rmw → true

end

Theorem 4.

(∀ opsem p.

statically satisfied release acquire fenced condition opsem p −→

(behaviour release acquire fenced memory model release acquire fenced condition opsem p =

behaviour sc accesses memory model sc accesses condition opsem p))

sc accesses

release acquire fenced

Without SC atomics, the sc order is no longer needed, and restrictions based on it

can be omitted. The release acquire fenced memory model drops two conjuncts from the

consistency predicate: sc accesses consistent sc and sc accesses sc reads restricted. These

predicates impose no restriction in the absence of SC atomics, and the rest of the model

remains the same, so showing equivalence with the sc accesses memory model is trivial.

Programs without fences Without fences, the calculation of sw can be simplified sub-

stantially. The release acquire relaxed memory model, from Section 3.5, is equivalent to

the release acquire fenced memory model, from Section 3.6, for programs without fences:

let release acquire relaxed condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .
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∀ a ∈ Xo.actions .

match a with

| Lock → true

| Unlock → true

| Load mo → (mo ∈ {NA, Acquire, Relaxed})

| Store mo → (mo ∈ {NA, Release, Relaxed})

| RMW mo → (mo ∈ {Acq rel, Acquire, Release, Relaxed})

| Fence → false

| Blocked rmw → true

end

Theorem 5.

(∀ opsem p.

statically satisfied release acquire relaxed condition opsem p −→

(behaviour release acquire relaxed memory model release acquire relaxed condition opsem p =

behaviour release acquire fenced memory model release acquire fenced condition opsem p))

release acquire fenced

release acquire relaxed

The mathematical machinery that supports fence synchronisation is rel-

atively complex, and omitting fences makes it unnecessary. The re-

lease acquire relaxed memory model has the same consistency predicate and undefined

behaviour as the release acquire fenced memory model, but the calculated relations that

make up the sw relation can be simplified. First, the hypothetical-release-sequence

relation, hrs, can be omitted: it is only used for fence synchronisation. Then the

definition of sw can be simplified to remove conjuncts that apply only to fences. Again,

proving this equivalence is trivial, because the differences in the models have no effect

for programs without fences.

Programs without release or acquire atomics Without the release and acquire

memory orders, programs can no longer use atomic accesses to synchronise, and again the

sw relation can be simplified. The relaxed only memory model of Section 3.3 is equivalent

to the release acquire relaxed memory model of Section 3.5 for programs that do not use

the release and acquire memory orders:

let relaxed only condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .

∀ a ∈ Xo.actions .
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match a with

| Lock → true

| Unlock → true

| Load mo → mo ∈ {NA, Relaxed}

| Store mo → mo ∈ {NA, Relaxed}

| RMW mo → mo ∈ {Relaxed}

| Fence → false

| Blocked rmw → true

end

Theorem 6.

(∀ opsem p.

statically satisfied relaxed only condition opsem p −→

(behaviour relaxed only memory model relaxed only condition opsem p =

behaviour release acquire relaxed memory model release acquire relaxed condition opsem p))

release acquire relaxed

relaxed only

Without release atomics, there can be no release-sequences, so the calculated relation

rs will be empty, and can be removed. Furthermore, the atomic synchronisation conjunct

can be omitted from the sw relation, which becomes:

let locks only sw actions asw lo a b =

(tid of a ̸= tid of b) ∧

( (* thread sync *)

(a, b) ∈ asw ∨

(* mutex sync *)

(is unlock a ∧ is lock b ∧ (a, b) ∈ lo)

)

The consistency predicate and calculation of undefined behaviour remain the same,

and it is just the set of calculated relations that change. The relations that have changed

have only omitted constituent parts that were empty in suitably restricted programs, so

equivalence is straightforward.

Programs without atomics For programs that do not use atomic locations, the re-

laxed only memory model of Section 3.3 is equivalent to the locks only memory model of

Section 3.2:
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let locks only condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .

∀ a ∈ Xo.actions .

match (loc of a) with

| Nothing → false

| Just l → (Xo.lk l ∈ {Mutex, Non Atomic})

end

Theorem 7.

relaxed only

locks only

(∀ opsem p.

statically satisfied locks only condition opsem p −→

(behaviour locks only memory model locks only condition opsem p =

behaviour relaxed only memory model relaxed only condition opsem p))

The locks only memory model describes the semantics of such programs, and is greatly

simplified. Without atomics, the modification-order relation, mo, is empty, and the re-

strictions that apply to atomics or mo edges become unnecessary. The following conjuncts

of the consistency predicate are omitted:

• consistent mo,

• consistent atomic rf,

• coherence memory use and

• rmw atomicity.

Again, equivalence is easy to show, because the parts of the model that have been lost

impose no restriction over the restricted set of programs.

single-threaded programs The final step in the sequence equivalences applies

to single-threaded programs that use none of the concurrency features. For

these programs, the single thread memory model of Section 3.1 is equivalent to the

locks only memory model of Section 3.2:

let single thread condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .

∃ b ∈ Xo.actions . ∀ a ∈ Xo.actions .

(tid of a = tid of b) ∧

match (loc of a) with

| Nothing → false

| Just l → (Xo.lk l = Non Atomic)

end
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Theorem 8.

(∀ opsem p.

statically satisfied single thread condition opsem p −→

(behaviour single thread memory model single thread condition opsem p =

behaviour locks only memory model locks only condition opsem p))

locks only

single thread

The single thread memory model includes several simplifications. The calculation of

undefined behaviour no longer needs to identify data races because they are the interaction

of memory access from more than one thread. There is no need to check for incorrectly

used mutexes because the memory model only applies to programs that do not use mu-

tex locations. There is no synchronisation at all in this model because there is only a

single thread, so the sw relation is no longer needed, and happens-before is equal to the

sequenced-before relation. Sequenced before is already required to be acyclic, so there is

no need to check that again with the consistent hb conjunct of the consistency predicate.

Lock order, lo, no longer has any effect on consistency, so the locks only consistent lo and

locks only consistent locks conjuncts of the consistency predicate can be omitted.

The proof of equivalence with all of these omissions is again straightforward, because

the parts that are left out place no restrictions on programs that satisfy the condition.

6.4 Synchronisation without release sequences

This section draws together a set of equivalences that simplify the release-acquire syn-

chronisation mechanism for programs that do not use relaxed atomic accesses. Without

relaxed, there is no need for the complexity of the release sequence, and if the initialisation

of an atomic always happens before all accesses of it, thin-air executions (see Chapter 5)

are forbidden. These results make up the following path through the overview graph:
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As well as avoiding relaxed atomic accesses, the models presented in this section re-

quire some modest discipline in the use of atomic initialisation: atomic initialisation first

requires that the program perform only a single initialisation at each atomic location, and

that it create happens-before edges from the initialisation to any writes at that location.

The precise definition of the restriction, and motivation for its existence are provided be-

low. The C++11 imposes a similar restriction on programmers: it allows them to initialise

an atomic only once. C11 appears to be more liberal however, allowing programmers to

re-initialise atomics.

The first equivalence relates the sc fenced memory model of Section 3.8 to a new mem-

ory model: the release acquire SC memory model, that does not have release sequences.

Recall that the release sequence allows reads from relaxed atomics to cause synchronisa-

tion to mo-prior release atomics. Release sequences are defined as follows:

let rs element head a =

(tid of a = tid of head) ∨ is RMW a

let release sequence set actions lk mo =

{ (rel , b) | ∀ rel ∈ actions b ∈ actions |
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is release rel ∧

( (b = rel) ∨

( (rel , b) ∈ mo ∧

rs element rel b ∧

∀ c ∈ actions .

((rel , c) ∈ mo ∧ (c, b) ∈ mo) −→ rs element rel c ) ) }

Actions in the sequence are either on the same thread as the release, or they are read-

modify-write actions. The sequence is headed by a release action, and is made up of a

contiguous subset of mo. The sequence ends before the first action on a different thread

that is not a read-modify-write.

In the sc fenced memory model, the sw relation is calculated using release sequences

— acquire actions that read from some write, synchronise with the head of any release

sequence that contains the write (a version of sw without fence synchronisation is shown

for clarity):

let release acquire relaxed synchronizes with actions sb asw rf lo rs a b =

(tid of a ̸= tid of b) ∧

( (* thread sync *)

(a, b) ∈ asw ∨

(* mutex sync *)

(is unlock a ∧ is lock b ∧ (a, b) ∈ lo) ∨

(* rel/acq sync *)

( is release a ∧ is acquire b ∧

(∃ c ∈ actions . (a, c) ∈ rs ∧ (c, b) ∈ rf ) )

). . .

It is a tempting hypothesis that, in the absence of relaxed-memory-order operations,

release sequences have no effect, but this is not true without also imposing an additional

restriction. Non-atomic writes of atomic locations are allowed, and can be within a release

sequence. An acquire load that reads such a write will create a happens-before edge in the

model with release sequences, but not in the other. This discrepancy means that some

programs are racy in the release-acquire model, but are not in the model with release

sequences.

We introduce a condition, atomic initialisation first, that restricts to programs where

these models are equivalent, and where thin-air behaviour is not allowed. The following

definitions are from the release acquire SC memory model, that does without release se-

quences. This model will motivate the condition that must be imposed on programs to

achieve equivalence.

In this new model, the consistency predicate and undefined behaviour will remain the

same, but the calculated relations will change, omitting release sequences, and adopting

a simpler sw calculation:
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let release acquire synchronizes with actions sb asw rf lo a b =

(tid of a ̸= tid of b) ∧

( (* thread sync *)

(a, b) ∈ asw ∨

(* mutex sync *)

(is unlock a ∧ is lock b ∧ (a, b) ∈ lo) ∨

(* rel/acq sync *)

( is release a ∧ is acquire b ∧ (a, b) ∈ rf )

)

The model condition for this equivalence imposes atomic initialisation first, and also

requires that programs use no relaxed atomic accesses. Note the absence of the release and

acquire memory orders from those allowed for read-modify-write actions. Those memory

orders only synchronise part of the read-modify-write access, the write and the read part

respectively. This would leave the other part of the access with relaxed semantics, so we

forbid those memory orders. The release and acquire fences have also been dropped in

this model; they are no longer useful in the absence of relaxed atomics.

let release acquire SC condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .

atomic initialisation first (Xo, Xw , rl) ∧

∀ a ∈ Xo.actions .

match a with

| Lock → true

| Unlock → true

| Load mo → (mo ∈ {NA, Acquire, Seq cst})

| Store mo → (mo ∈ {NA, Release, Seq cst})

| RMW mo → (mo ∈ {Acq rel, Seq cst})

| Fence mo → (mo ∈ {Seq cst})

| Blocked rmw → true

end

Theorem 9.

(∀ opsem p.

statically satisfied release acquire SC condition opsem p −→

(behaviour sc fenced memory model sc fenced condition opsem p =

behaviour release acquire SC memory model release acquire SC condition opsem p))

sc fenced

release acquire sc
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Now we show that this equivalence holds. Seeking equality in the absence of relaxed

atomics, and expecting failure, compare the relations that result from substituting the

two different sw relations into happens before:

let no consume hb sb sw =

transitiveClosure (sb ∪ sw)

Seeking happens-before equality First note that release acquire synchronizes with

is a subset of release acquire relaxed synchronizes with (every release heads its own release

sequence) and this inclusion can be lifted to the respective happens-before relations. The

converse is not true however: the release sequence allows a read of a read-modify-write

to synchronise with a seemingly unrelated release-write on a different thread. To show

equality, it is sufficient to show that every synchronises-with edge in the model with

release-sequences is covered by a happens-before edge in the model without.

Consider an arbitrary synchronises-with edge between a release write, h, and an acquire

read, r. Then there exists some action w in the release sequence of h such that r reads

from w:

h:WREL x=1

r:RACQ x=4

w:WREL x=4

mo,rs

sw

rf,sw

This shape generates a sw edge from h to r in the sc fenced memory model. To show

that there is a happens-before edge from h to r in the release acquire SC memory model,

first consider the case where none of the actions in the release sequence is an initialisation

write. Then, w must be a release, and r must be an acquire, and there is an sw edge, and

consequently a happens-before edge (w, r). If w is equal to h, then the existence of the

hb edge has been shown, so consider the case where they are different. Happens-before

is transitve in this model, so it is sufficient to show that there is a happens-before egde

from h to w.

If w is on the same thread as h then indeterminate sequencing from the consistency

predicate guarantees that there is a sequenced before edge between the two actions. That

edge must agree with modification order, and therefore, there is a happens-before edge

from w to h as required.

In the case that w is not on the same thread as h, then w is a read-modify-write action.

Consistency implies that modification order has finite prefixes, and that it is acyclic. The

set of actions that are mo-before w where all actions are on a different thread from h is

then either empty, or finite, and we can chose the minimal action in mo. Either way, we

have an action, b, that must be a read-modify-write, whose immediate mo predecessor, a,
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is on the same thread as h. By rmw atomicity, b must read from a, and because neither

is an initialisation, and there are no relaxed atomics, the two actions synchronise. Next,

either a equals h or indeterminate sequencing implies that there is a happens-before edge

from h to a. Then either b is equal to r, and transitivity completes a happens-before

edge from h to r, or there is a contiguous finite sequence of read-modify-write actions

in mo between b and r. Each of these creates a happens-before edge to its predecessor,

and again transitivity provides us with the required happens-before edge. The following

example illustrates the case where neither h and a, nor b and r are equal:

a:WREL x=2

b:RMWA/R x=2/3

h:WREL x=1

w:RMWA/R x=3/4

r:RACQ x=4

sb,mo

rsrf,mo,sw

rf,mo,sw

rf,sw

Then we have the happens-before edge we required in the case that none of the

writes in the release sequence were the initialisation. If initialisation writes are allowed

in the release sequence, then it may not be possible to build a happens-before edge in

the release acquire SC memory model coincident with every synchronises-with edge in the

sc fenced memory model. There are several examples that illustrate this: in the first, the

non-atomic initialisation write takes the position of a in the diagram above — the last

action on the same thread as h before a series of read-modify-write actions that are even-

tually read by r. Then there is no happens-before edge from a to its successor, and the

chain of happens-before edges is broken:

a:WNA x=2

b:RMWA/R x=2/3

h:WREL x=1

w:RMWA/R x=3/4

r:RACQ x=4

sb,mo

rsrf,mo

rf,mo,sw

rf,sw

Similarly, r may read directly from a, but in the case that a is an initialisation, then

it is not a release, and again the chain of happens-before edges is broken.

It is sufficient then, for equivalence, to ensure that initialisation writes cannot appear

in any release sequence in which they might be read by a read-modify-write action. This
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is a dynamic property that can only be checked by calculating the set of consistent execu-

tions. It would be preferable to have a property that provides this guarantee that can be

statically checked. atomic initialisation first is stronger than necessary, but it is sufficient

for equivalence, and seems like a reasonable discipline to require of a programmer. It

requires that for every non-atomic store at an atomic location, a, and any other write

at the same location, b, b is not a non-atomic write and b follows a in sequenced-before

union additional-synchronises-with:

let atomic initialisation first (Xo, , ) =

∀ a ∈ Xo.actions b ∈ Xo.actions .

is at atomic location Xo.lk a ∧ is NA store a ∧

is write b ∧ (loc of a = loc of b) ∧ (a ̸= b) −→

((a, b) ∈ transitiveClosure (Xo.sb ∪ Xo.asw)) ∧ ¬ (is NA store b)

This property implies that there is a single initialisation of each atomic location,

and that it happens before all writes to the same location. Equivalence of the re-

lease acquire SC memory model and the sc fenced memory model has been established in

HOL4 with this condition, following the argument provided above for the equivalence of

the happens-before relations.

Causal consistency — the release-acquire model Without SC atomics or fences,

the model becomes conceptually simple, providing only the release-acquire atomics with

the straightforward definition of sw given above. The following equivalence relates the

release acquire memory model of Section 3.4 to the release acquire SC memory model de-

fined above. The equivalence is straightforward to prove; the parts of the model that deal

with SC atomics and fences are simply omitted.

let release acquire condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .

atomic initialisation first (Xo, Xw , rl) ∧

∀ a ∈ Xo.actions .

match a with

| Lock → true

| Unlock → true

| Load mo → (mo ∈ {NA, Acquire})

| Store mo → (mo ∈ {NA, Release})

| RMW mo → mo = Acq rel

| Fence → false

| Blocked rmw → true

end
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Theorem 10.

(∀ opsem p.

statically satisfied release acquire condition opsem p −→

(behaviour release acquire memory model release acquire condition opsem p =

behaviour release acquire SC memory model release acquire SC condition opsem p))

release acquire sc

release acquire

The model without atomics The final equivalence in this sequence of models re-

lates the release acquire memory model to the locks only memory model. Observe that

the condition on this equivalence subsumes the previous one — atomic initialisation first

only applies to atomic locations. Again, this equivalence is straightforward, and simply

removes the parts of the model that apply to atomic accesses.

let locks only condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .

∀ a ∈ Xo.actions .

match (loc of a) with

| Nothing → false

| Just l → (Xo.lk l ∈ {Mutex, Non Atomic})

end

Theorem 11.

locks only

release acquire
(∀ opsem p.

statically satisfied locks only condition opsem p −→

(behaviour SC memory model SC condition opsem p =

behaviour locks only memory model locks only condition opsem p))

6.5 SC behaviour in the C/C++11 memory model

This section presents the equivalence between the C/C++11 memory model and a se-

quentially consistent memory model. The following overview graph shows the sequence

of equivalences that provide this result:
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Boehm and Adve described a desirable property of the C+11 memory model [37]: race

free programs that use only the SC atomics, mutexes and non-atomic accesses have SC

behaviour. They proved this result, by hand, for a precursor of the C++11 memory model.

This precursor model was much simpler than C++11: it has a single total order over all

atomic accesses, rather than per-location modification orders and coherence requirements,

and it did not have non-atomic initialisation, a complication that invalidated this property

in early drafts of the standard (see Chapter 5 for details).

The results presented in this section establish, in HOL4, the property described by

Boehm and Adve for the C++11 memory model, as ratified, albeit for a limited set of

programs: those that only have finite pre-executions (so not those with recursion or loops).

The first equivalence in this sequence is a simple one — it removes the release and

acquire atomics, leaving only atomics with the SC memory order:

let SC condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .

atomic initialisation first (Xo, Xw , rl) ∧

∀ a ∈ Xo.actions .

match a with
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| Lock → true

| Unlock → true

| Load mo → (mo ∈ {NA, Seq cst})

| Store mo → (mo ∈ {NA, Seq cst})

| RMW mo → (mo ∈ {Seq cst})

| Fence mo → false

| Blocked rmw → true

end

Theorem 12.

(∀ opsem p.

statically satisfied SC condition opsem p −→

(behaviour SC memory model SC condition opsem p =

behaviour release acquire SC memory model release acquire SC condition opsem p))

release acquire sc

sc only

The SC memory model is new, but differs only slightly from the re-

lease acquire SC memory model defined above. Release-acquire synchronisation remains

in the model, because SC atomics do create release-acquire synchronisation. The part of

the consistency predicate that deal with SC fences is omitted as it places no restriction on

the restricted set of programs. As a consequence, the equivalence proof is straightforward.

The totally ordered memory model

All of the memory models described so far have been based on partial orders. There has

not been a global order of memory accesses that matches the intuition of time passing.

The next equivalence will relate the C/C++11 memory model to such a model, and in so

doing, validate a central tenet of the memory model design.

In order to state the proof of equivalence, we must define a sequentially consistent

model that matches the following note from the standard, and is similar to the totally

ordered model of Boehm and Adve. The note claims a property holds of the C/C++11

memory model design: that suitably restricted programs exhibit sequentially consistent

behaviour.

1.10p21
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[. . . ][ Note: It can be shown that programs that correctly use mutexes and mem-

ory order seq cst operations to prevent all data races and use no other synchroniza-

tion operations behave as if the operations executed by their constituent threads

were simply interleaved, with each value computation of an object being taken from

the last side effect on that object in that interleaving. This is normally referred to

as “sequential consistency”. However, this applies only to data-race-free programs,

and data-race-free programs cannot observe most program transformations that

do not change single-threaded program semantics. In fact, most single-threaded

program transformations continue to be allowed, since any program that behaves

differently as a result must perform an undefined operation. — end note ]

The note refers to the sequentially consistent memory model of Lamport [60], presented

in Chapter 2, where all memory accesses are interleaved, and loads from memory read

the most recent write in this interleaving.

We present an axiomatic formulation of SC that follows Boehm and Adve. Rather

than a partial happens-before relation, this model is governed by a total order over the

actions, tot, that forms part of the execution witness. The structure of the model is the

same as the previous models: there is a consistency predicate, calculated relations, and

undefined behaviour. The model ensures that tot is a total order over the actions a new

conjunct of the consistency predicate, tot consistent tot. It also ensures that tot agrees

with sb and asw, and has finite prefixes:

let tot consistent tot (Xo, Xw , ) =

relation over Xo.actions Xw .tot ∧

isTransitive Xw .tot ∧

isIrreflexive Xw .tot ∧

isTrichotomousOn Xw .tot Xo.actions ∧

Xo.sb ⊆ Xw .tot ∧

Xo.asw ⊆ Xw .tot ∧

finite prefixes Xw .tot Xo.actions

The tot relation replaces the host of partial relations that governed previous models.

Take, for instance, the lock-order relation: in this model, the condition on locks is adjusted

slightly so that tot can be used to similar effect:

let tot consistent locks (Xo, Xw , ) =

(∀ (a, c) ∈ Xw .tot .

is successful lock a ∧ is successful lock c ∧ (loc of a = loc of c)
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−→

(∃ b ∈ Xo.actions . (loc of a = loc of b) ∧ is unlock b ∧ (a, b) ∈ Xw .tot ∧ (b, c) ∈ Xw .tot))

Where in previous model, the happens-before relation was used to decide read values,

in this model tot is used. The only calculated relation is a version of the visible-side-effect

relation that uses tot in place of happens-before. For each read, it relates the most recent

write to the read.

This model simplifies the semantics of reads by unifying the parts of the model that

govern non-atomic loads, atomic loads and read-modify-writes. As part of this unification,

the det read condition changes slightly, to apply to all actions rather than just loads.

let tot det read (Xo, Xw , :: (“vse”, vse) :: ) =

∀ r ∈ Xo.actions .

(∃ w ∈ Xo.actions . (w , r) ∈ vse) =

(∃ w ′ ∈ Xo.actions . (w ′, r) ∈ Xw .rf )

In the previous model, there are five conditions that identify the writes that may be

read by the different sorts of read action:

• consistent non atomic rf

• consistent atomic rf

• coherent memory use

• rmw atomicity

• sc accesses sc reads restricted

In this model, the coherence requirements are no longer necessary, because there is

only a single total order, and the four remaining conditions can be unified into a single

one that applies to all reads:

let tot consistent rf (Xo, Xw , :: (“vse”, vse) :: ) =

∀ (w , r) ∈ Xw .rf . (w , r) ∈ vse

The tot relation has replaced the mo, lo, sc and hb relations, and consequently this

model omits the conditions from the consistency predicate of the SC memory model that

checked the consistency of those relations:

• locks only consistent lo

• consistent mo

• sc accesses consistent sc
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• consistent hb

Furthermore, there is no need to assume that each of the partial relations has finite

prefixes. In this model it is assumed only that rf has finite prefixes:

let tot assumptions (Xo, Xw , ) =

finite prefixes Xw .rf Xo.actions

The final differences between this model and the last are in the calculation of unde-

fined behaviour. The total model shares the same calculation of unsequenced races and

indeterminate reads, but the identification of bad mutex use changes slightly, and the

definition of data races is quite different. The tot bad mutexes function first projects out

a relation equivalent to lock order from tot, and then uses that to check the for violating

mutex actions with the same predicate as the previous models:

let tot bad mutexes (Xo, Xw , ) =

{ a | ∀ a ∈ Xo.actions |

let lo = { (a, b) | ∀ a ∈ Xo.actions b ∈ Xo.actions |

((a, b) ∈ Xw .tot) ∧ (loc of a = loc of b) ∧

is at mutex location Xo.lk a

} in

¬ (locks only good mutex use Xo.actions Xo.lk Xo.sb lo a)}

It would defeat the purpose of the simplifications made here if one had to calculate

races in terms of the previous models. Instead, the definition of races in this model follows

the standard definition of races in sequentially consistent models similar to the one used

in Boehm and Adve’s paper [37]. Two distinct actions at the same location form a data

race if at least one of them is a write, they are on different threads, at least one of them

is not atomic, they are not ordered by asw, and the two actions are adjacent in tot:

let tot data races (Xo, Xw , ) =

{ (a, b) | ∀ a ∈ Xo.actions b ∈ Xo.actions |

¬ (a = b) ∧ (loc of a = loc of b) ∧ (is write a ∨ is write b) ∧

(tid of a ̸= tid of b) ∧

¬ (is atomic action a ∧ is atomic action b) ∧

¬ ((a, b) ∈ Xo.asw) ∧

(a, b) ∈ Xw .tot ∧

¬ (∃ c ∈ Xo.actions . ((a, c) ∈ Xw .tot) ∧ ((c, b) ∈ Xw .tot)) }

The condition necessary for the equivalence has two parts. The first,

atomic initialisation before all, is stronger than atomic initialisation first, requiring

atomic reads to be ordered after the initialisation, as well as writes:
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let atomic initialisation before all (Xo, , ) =

∀ a ∈ Xo.actions b ∈ Xo.actions .

is at atomic location Xo.lk a ∧ is NA store a ∧

(loc of a = loc of b) ∧ (a ̸= b) −→

((a, b) ∈ transitiveClosure (Xo.sb ∪ Xo.asw)) ∧ ¬ (is NA store b)

The second condition will be used to enable finite induction over sets of executions of

increasing size, ensuring that, in the limit, the set of finite executions covers all of the

possible executions of the program. This is guaranteed by requiring a finite bound on the

size of the action sets of all executions of the program:

let bounded executions (Xs : set candidate execution) =

∃ N . ∀ (Xo, Xw , rl) ∈ Xs .

finite Xo.actions ∧

size Xo.actions < N

This condition limits the scope of the result significantly: programs that include loops

or recursion do not satisfy the condition. Litmus tests without loops do however, so the

equivalence result will apply to the litmus tests in Chapter 3, and those in the literature.

We adopt the condition to simplify the proof of equivalence.

An alternative approach would be to define a relation over execution prefixes, show

that it is well founded, and then use well-founded induction over prefixes of increasing

size. This alternative approach would require additional assumptions that restrict the

structure of the program, in order to avoid an infinite chain of happens-before-unrelated

threads, breaking well-foundednesss. This might be achieved by adding thread-creation

events to the model: on creating new threads there would be an event on the parent thread

that would be related to thread-start events on the children. We would then require a

parent to only create a finite number of threads with a single thread creation event. This

assumption seems to be satisfied by the syntax of the language, and we conjecture that,

with suitable assumptions, the theorem would hold over infinite executions.

With the definition of the totally ordered model and its conditions, it is possible to

formally state the equivalence that 1.10p21 claims.

let tot condition (Xs : set candidate execution) =

bounded executions Xs ∧

∀ (Xo, Xw , rl) ∈ Xs .

atomic initialisation before all (Xo, Xw , rl) ∧

∀ a ∈ Xo.actions .

match a with

| Lock → true

| Unlock → true
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| Load mo → (mo ∈ {NA, Seq cst})

| Store mo → (mo ∈ {NA, Seq cst})

| RMW mo → (mo ∈ {Seq cst})

| Fence mo → false

| Blocked rmw → true

end

Theorem 13.

sc only

total

(∀ opsem p.

opsem assumptions opsem ∧

statically satisfied tot condition opsem p −→

(rf behaviour SC memory model SC condition opsem p =

rf behaviour tot memory model tot condition opsem p))

Equivalence proof overview

This proof of equivalence is rather more involved than those that have already been

presented. The form of candidate executions differs between the two models: they have

different execution witnesses and different calculated relations, so the equivalence that

projects only rf from the execution witness is used. The proof relies on several assumptions

on the thread-local semantics that enable induction over partial executions.

At the highest level, the proof involves showing that one can translate an execution

from one model into an execution in the other. These translations will rely on the ab-

sence of undefined behaviour, and are supported by complementary proofs showing that

undefined behaviour in one model implies undefined behaviour in the other.

The translation from a total order execution to a partial one is straightforward: each

of the partial relations, lo, mo and sc is projected out of tot, and a translated execution

witness gathers these translated relations together. In the other direction, a linearisation

of the union of hb and sc forms the translated total order of the execution witness. Then,

as we shall see in greater detail later, in the absence of faults, these translations produce

consistent executions in their target models.

The treatment of faults that lead to undefined behaviour forms a large part of the

proof effort. The line of argument relies on the notion of a prefix , a partial execution

that includes all actions that are ordered before any action within the prefix. In either

direction, the general form of the proof follows the same series of steps. Given a faulty

execution in one model:

1. choose some order over the actions and find a minimal fault in that order,

2. construct a prefix of that fault that contains no other faults,

3. show that this prefix is consistent,
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4. translate the prefix into an execution prefix in the other model,

5. show that this new execution prefix is consistent in the other model, using the fact

that its progenitor is fault free,

6. extend this execution, adding the faulty action from the original execution, forming a

new consistent prefix,

7. show that there is a fault in the extended prefix,

8. and finally, complete the extended prefix to make a full consistent execution with a

fault.

Given a fault in one model, this sequence of steps witnesses a (possibly quite different)

consistent execution in the other model that has a fault. This shows that a program with

undefined behaviour under one model has undefined behaviour in the other.

The C/C++11 standard does not define prefixes of candidate executions or provide

support for induction over such artefacts. In order to prove this equivalence, it is necessary

to make several assumptions that enable this sort of reasoning. The next section presents

these assumptions.

Assumptions on the thread-local semantics

The proof involves an induction that shows that a racy prefix with undefined behaviour

can be extended to a full consistent execution with undefined behaviour. This section

describes the assumption that we make over the thread-local semantics in order to provide

support for this induction. It begins with the formal definition of an execution prefix.

A prefix is a set of actions that identifies a part of a pre-execution of a program. The

prefix must be downclosed , that is, for any action in the prefix, all sb or asw predecessors

are also in the prefix. The following definition captures this notion when used with the

relation sbasw, also defined below:

let

downclosed A R = ∀ a b. b ∈ A ∧ (a, b) ∈ R −→ a ∈ A

let sbasw Xo = transitiveClosure (Xo.sb ∪ Xo.asw)

The set of actions that identifies a prefix must be a finite subset of the actions of some

pre-execution that the thread-local semantics produces from the program. The definition

of a prefix is then:

let is prefix opsem p Xo A =

opsem p Xo ∧ A ⊆ Xo.actions ∧ downclosed A (sbasw Xo) ∧ finite A
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The induction will proceed by adding actions to a prefix one at a time. A prefix of

increased size will have to be sbasw -downclosed, so only actions that follow actions from

the prefix in sb or asw, with no sbasw -intervening actions can be added. We precisely

define these actions as the fringe set : the minimal set of actions in sbasw that are not

already contained in the prefix.

let fringe set Xo A = minimal elements (\ Xo.actions A) (sbasw Xo)

The inductive step will require the addition of actions from the fringe-set. It will then

be necessary to show that the extended prefix is consistent. If the action that is added is

a read or a lock, it may have a value or outcome that is not consistent with the rest of the

prefix. In that case, we assume receptiveness : that there is another execution produced

by the thread-local semantics, where the new action reads a different value or produces

a different lock outcome. In order to define this property of the thread-local semantics,

we define a new relationship between pre-executions, same-prefix. This relationship is

parameterised by an action set. It requires that the prefixes of the two pre-executions

over the given set are equal, and so are their fringe sets:

let same prefix Xo1 Xo2 A =

let AF = A ∪ fringe set Xo1 A in

(pre execution mask Xo1 AF = pre execution mask Xo2 AF ) ∧

(fringe set Xo1 A = fringe set Xo2 A)

Now we can define receptiveness: for a given prefix of a pre-execution and action in

the fringe-set of that prefix, the thread-local semantics admits pre-executions for every

possible value of the action (or for a blocked outcome if the action is a lock), each of which

has the same prefix and fringe set, differing only in the value of the action. The definition

of receptiveness relies on the auxiliary definitions replace-read-value and pre-execution-

plug, that respectively update the value of an action (or update the lock outcome to

blocked), and replace one action with another in the action set and relations of a pre-

execution. The definition of receptiveness is then:
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let

receptiveness opsem =

∀ p Xo A a.

is prefix opsem p Xo A ∧

a ∈ fringe set Xo A ∧

(is read a ∨ is successful lock a)

−→

∀ v .

let a ′ = replace read value a v in

∃ Xo ′.

is prefix opsem p Xo ′ A ∧

a ′ ∈ fringe set Xo ′ A ∧

same prefix Xo ′ (pre execution plug Xo a a ′) A

It is also necessary to assume that the thread-local semantics produces only pre-

executions that satisfy the well-formed-threads predicate:

let

produce well formed threads (opsem : opsem t) =

∀ Xo p. ∃ Xw rl . opsem p Xo −→ well formed threads (Xo, Xw , rl)

These assumptions are collected together in the opsem assumptions predicate:

let opsem assumptions opsem =

receptiveness opsem ∧

produce well formed threads opsem

Now the model condition and assumptions have been defined, we can present the

equivalence theorem precisely:

Theorem 1. (∀ opsem p.

opsem assumptions opsem ∧

statically satisfied tot condition opsem p −→

(rf behaviour SC memory model SC condition opsem p =

rf behaviour tot memory model tot condition opsem p))

Top-level case split

At the highest level, there are two cases: the case where either model identifies a racy

execution of the program, and the case where neither does. In the racy case, the proof

proceeds by identifying a racy execution in the other model, so that the behaviour of the

program is undefined in both models. In the race-free case, we need to show that there
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exists a consistent execution in the other model with the same pre-execution and the same

reads-from map. The racy and non-racy cases can each be split into two directions; this

leaves us with four top level cases to consider.

In the discussion that follows, the release acquire SC memory model will be referred

to as the HB-model and the tot memory model will be referred to as the SC-model. Then

the four cases to prove are:

1. For any consistent execution of a race-free program in the HB-model, there is a con-

sistent execution in the SC-model that shares the same pre-execution and reads-from

map.

2. For any consistent execution of a race-free program in the SC-model, there is a con-

sistent execution in the HB-model that shares the same pre-execution and reads-from

map.

3. For any racy program in the SC-model, there is a consistent execution in the HB-model

that has a race.

4. For any racy program in the HB-model, there is a consistent execution in the SC-model

that has a race.

A Defined HB Execution Corresponds to a Consistent SC Execution

In this case, we start with a consistent execution in the HB-model, X = (Xo,Xw , rl), with

a finite action set, of a program with no undefined behaviour, and we need to construct a

consistent execution in the SC-model, X ′, that shares the same pre-execution and reads-

from map. We start by proving properties of lock order, reads-from and happens-before.

Lemma 2. lo restricted to the successful locks and unlocks is a subset of hb

Proof. [This describes lo then hb in the formal proofs [2]] Without loss of generality,

consider two arbitrary mutex actions, a and b, where a precedes b in hb. There are four

cases for the four combinations of lock and unlock: unlock-lock, lock-lock, lock-unlock,

and unlock-unlock.

The unlock-lock case can be further split into the case where the two actions are from

different threads, and the case where they are on the same thread. The different thread

case follows directly from the definitions of synchronises-with and happens-before. The

same thread case follows from the indeterminate-sequencing conjunct of the HB-model’s

consistency predicate.

In the lock-lock case, the consistent-locks conjunct of the HB-model’s consistency

predicate implies that there is an intervening unlock action. Using the assumption that

lock order has finite prefixes, identify the lo-minimal unlock between the two successful

locks, c. This unlock happens-before b by the unlock-lock case established above. Now
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note that there is no undefined behaviour, and as a consequence, there exists a successful

lock, d, that is sequenced before c with no lock-order-intervening unlock between the two.

Now d must equal a, otherwise, consistency would require that there exist an unlock at

the same location lo-between d and a, and also lo-between d and c, a contradiction. This

implies that there is a sequenced before edge from a to c, completing a happens-before

edge from a to b, as required.

In the lock-unlock case, we use the lack of undefined behaviour to identify a successful

lock, c that precedes b in lock order and sequenced-before. Then either c is equal to a or

by the consistent-locks conjunct, a precedes c in lock order, and the lock-lock case above

implies that a happens before c, establishing through transitivity a happens-before edge

from a to b as required.

In the unlock-unlock case, we again use the lack of undefined behaviour to identify a

successful lock, c that precedes b in lock order and sequenced before, such that there is no

lo-intervening unlock between the two. This implies that a precedes c in lo, and we have

that a happens before c by the unlock-lock case above. Transitivity then implies that a

happens before b, as required.

All four cases have been shown to hold, so the lemma holds. ⊓0

Lemma 3. Any rf edge between actions at an atomic location is also a hb edge.

Proof. [This describes rf then hb in the formal proofs [2]] Name the reads-from related

actions w and r. If w and r are on the same thread, then the indeterminate-sequencing

and consistent-rf conjuncts of the HB-model’s consistency predicate imply that they are

ordered by happens-before. If they are on different threads and w is non-atomic, then the

atomic initialisation before all conjunct of the model condition implies that w happens

before r. If w is atomic then it must be a release, r must be an acquire and the two

actions synchronise, and w happens before r, as required. ⊓0

Lemma 4. There exists a strict linear order, tot, over the actions of Xo that contains

both the happens-before and SC order of X.

Proof. [This describes hb consistent fault free then tot order in the formal

proofs [2]] Define the relation hbsc as follows:

hbsc = (hb ∪ sc)+

Now we shall prove that the reflexive closure of hbsc, hbscr , can be extended to a

linear order. First we must show that hbscr is a partial order over the actions of the

pre-execution. Clearly the relation is transitive and reflexive, it remains to show that the

domain and range of the relation is the actions and that the relation is antisymmetric.
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The domain and range of hbscr is the actions hbsc is made up of relations whose

domain and range are restricted the actions of the pre-execution by the consistency pred-

icate of the HB-model. The domain and range of hbscr is therefore the same actions.

hbscr is antisymmetric Again, this relies on the consistency predicate of the HB-

model, this time the sc accesses consistent sc predicate, that forbids happens-before and

SC-order from having opposing edges. This, coupled with transitivity and acyclicity of

both relations provides us with antisymmetry of hbscr.

We have established that hbscr is a partial order, so we can extend it to a reflexive

total order totr , and then project the strict linear order tot from that. ⊓0

Theorem 5. There exists a strict linear order, tot, over the actions of Xo such that the

candidate execution X ′ comprising Xo, Xw .rf and tot is a consistent execution in the

SC-model.

Proof. [This describes hb consistent fault free then tot consistent in the formal

proofs [2]] First use Lemma 4 to identify tot , a strict linear order over the actions of Xo

that contains both the happens-before and SC order of X.

Now consider the conjuncts of the consistency predicate of the SC-model. Several of

the conjuncts are trivially satisfied because neither the relations they consider nor the con-

juncts themselves have changed. This includes the well formed threads and well formed rf

conjuncts. The tot assumptions conjunct is trivially satisfied by the stronger assumptions

conjunct that holds in the HB-model. The tot consistent tot conjunct is satisfied by con-

struction: tot is a strict linear order over the actions of Xo. Three conjuncts remain to

be shown for consistency: tot consistent locks, tot det read and tot consistent rf.

The tot consistent locks conjunct is defined as follows:

let tot consistent locks (Xo, Xw , ) =

(∀ (a, c) ∈ Xw .tot .

is successful lock a ∧ is successful lock c ∧ (loc of a = loc of c)

−→

(∃ b ∈ Xo.actions . (loc of a = loc of b) ∧ is unlock b ∧ (a, b) ∈ Xw .tot ∧ (b, c) ∈ Xw .tot))

To show this holds, we must show that any two successful locks at the same location

have a tot-intervening unlock at the same location. Without loss of generality, consider

two arbitrary locks, a and c, where a precedes c in tot. There must be a lock-order

edge between the two actions by the consistent-lock-order conjunct of the HB-model’s

consistency predicate. Lemma 2 implies that this lock order edge is also a happens-before

edge, and happens before is a subset of tot. tot is transitive and irreflexive, so we know

that a precedes c in lock order. Recall the consistent-locks conjunct of the HB-model’s

consistency predicate:
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let locks only consistent locks (Xo, Xw , ) =

(∀ (a, c) ∈ Xw .lo.

is successful lock a ∧ is successful lock c

−→

(∃ b ∈ Xo.actions . is unlock b ∧ (a, b) ∈ Xw .lo ∧ (b, c) ∈ Xw .lo))

The existence of the lo-intervening unlock, together with Lemma 2, establishes

tot consistent locks.

The tot det read conjunct is defined as follows:

let tot det read (Xo, Xw , :: (“vse”, vse) :: ) =

∀ r ∈ Xo.actions .

(∃ w ∈ Xo.actions . (w , r) ∈ vse) =

(∃ w ′ ∈ Xo.actions . (w ′, r) ∈ Xw .rf )

First note that there is no undefined behaviour, so there can be no reads in the

execution without a corresponding reads-from edge. Visible-side-effect edges only relate

writes to reads, so if there exists a visible side effect of some action, it is a read, and there

must be a write related to the read by a reads-from edge. It remains to show that if there

is a reads from edge to a read, then that read has a visible side effect.

Given a reads-from edge to a read r, data-race freedom together with Lemma 3 imply

that the reads from edge is coincident with a happens-before edge. That in turn implies

that there is a tot edge between the two actions. Finiteness of the action set implies that

we can find the maximal write at the location of r that precedes it in tot. This write is a

visible side effect of r, as required.

The tot consistent rf conjunct is defined as follows:

let tot consistent rf (Xo, Xw , :: (“vse”, vse) :: ) =

∀ (w , r) ∈ Xw .rf . (w , r) ∈ vse

Label the actions related by the reads-from edge as w and r. The reads from edge

from w to r, together with data-race freedom and Lemma 3 implies that w happens before

r. Then we know that w precedes r in tot by the construction of tot.

Suppose, for a contradiction, that there is a tot intervening write to the same loca-

tion, c, between w and r. The reads and writes cannot be at a non-atomic location:

if they were, then the lack of data races would imply happens-before edges coincident

with the tot edges, and the consisten-rf conjunct of the HB-model’s consistency pred-

icate would be violated. The actions must therefore be at an atomic location. By the

atomic initialisation before all conjunct of the model condition, only c is not a non-atomic

write, and c and r must be SC actions ordered by the SC-order from c to r. Regardless

of whether w is an SC write or a non-atomic write, the reads-from edge from w to r con-

tradicts the sc-reads-restricted conjunct of the HB-model’s consistency predicate. This
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implies that there is no tot intervening write, c, to the same location, between w and r,

and that w is a visible side effect of r, as required.

This completes the consistency predicate. ⊓0

A Defined SC Execution Corresponds to a Consistent HB Execution

In this case, we start with a consistent execution in the SC-model, X = (Xo,Xw , rl), with

a finite action set, of a program with no undefined behaviour, and we need to construct

a consistent execution in the HB-model, X ′, that shares the same pre-execution and

reads-from map.

We start by defining a new execution witness Xwp , that will form part of the candidate

execution in the HB-model. The components of Xwp are simply projections of tot. There

are three projections; the first is a projection of tot to the lock and unlock actions at each

location:

let lo p tot0 Xo =

{(a, b) | (a, b) ∈ tot0 ∧ (a ̸= b) ∧ (loc of a = loc of b) ∧

(is lock a ∨ is unlock a) ∧ (is lock b ∨ is unlock b) ∧

is at mutex location Xo.lk a

}

The second is a projection of tot to the write actions at each location:

let mo p tot0 Xo =

{(a, b) | (a, b) ∈ tot0 ∧ is write a ∧ is write b ∧ (a ̸= b) ∧

(loc of a = loc of b) ∧ is at atomic location Xo.lk a

}

The third is a projection of tot to the SC actions:

let sc p tot0 =

{(a, b) | (a, b) ∈ tot0 ∧ (a ̸= b) ∧ is seq cst a ∧ is seq cst b}

The execution witness Xwp is then defined as:

let Xw p tot0 Xo rf 0 =

⟨| rf = rf 0;

mo = mo p tot0 Xo;

sc = sc p tot0;

lo = lo p tot0 Xo;

ao = {};

tot = {};

|⟩
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Lemma 6. Any edge in the reads-from relation is coincident with a visible side effect in

the calculated relations of the projected execution witness, X ′.

Proof. [This describes rf then hb vse thm in the formal proofs [2]] Call the actions re-

lated by the reads-from relation w and r. The tot-consistent-rf conjunct of the SC-model’s

consistency predicate implies that w is a visible side effect of r with respect to the tot

relation.

First we show that w happens before r. First consider the case where w and r are

on the same thread. There is no undefined behaviour, so there can be no unsequenced

races, and w and r must be ordered by sequenced before. Sequenced before is a subset

of tot by the tot-consistent conjunct of the consistency predicate, so w happens before r.

In the case where w and r are on different threads and at least one is non-atomic, race

freedom implies and the fact that happens-before is a subset of tot implies that w happens

before r. In the case where w and r are on different threads and both are atomic, they

synchronise and w happens before r.

If there were a happens-before intervening write to the same location, the fact that

happens-before is a subset of tot would make this write a tot-intervening write, violating

the premise that w is a tot-visible-side-effect. Consequently, w is a happens-before visible

side effect of r. ⊓0

Theorem 7. The consistent execution with the pre-execution Xo, the projected execution

witness Xwp, and the HB-model’s calculated relations is a consistent execution in the

HB-model.

Proof. [This describes total consistent fault free then partial consistent in the

formal proofs [2]] Consider the conjuncts of the consistency predicate of the HB-model.

Several of the conjuncts are trivially satisfied because neither the relations they con-

sider nor the conjuncts themselves have changed. This includes the well formed threads

and well formed rf conjuncts. The assumptions conjunct is trivially satisfied because

each of the relations it checks for finite prefixes is a subset of tot, that has finite pre-

fixes by the tot consistent tot conjunct of the SC-model. The locks only consistent locks,

locks only consistent lo, consistent mo, sc accesses consistent sc and consistent hb con-

juncts of the HB-model’s consistency predicate all follow from the tot consistent tot con-

junct of the SC-model and the construction of X ′: each of the relations that the predicates

restrict is a subset of tot.

The det read conjunct is defined as follows:

let det read (Xo, Xw , :: (“vse”, vse) :: ) =

∀ r ∈ Xo.actions .

is load r −→

(∃ w ∈ Xo.actions . (w , r) ∈ vse) =

(∃ w ′ ∈ Xo.actions . (w ′, r) ∈ Xw .rf )
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There are two directions to establish. First assume there is a reads from edge, we must

show that there is an Xwp-happens-before visible side effect edge to the read. Lemma 6

implies that there is a visible side effect edge coincident with the reads-from edge, so it

remains to show that if there is a tot visible side effect edge, then there is a reads from

edge to the read. In this case, the fact that Xwp happens before is a subset of tot implies

that there is a write to the same location tot-before the read. We can then use the fact

that tot has finite prefixes to find a tot-maximal write to the same location before the

read, a tot visible side effect. Then we appeal to tot det read to identifies a reads from

edge, as required.

The consistent non atomic rf and consistent atomic rf conjuncts follows directly from

Lemma 6 and the already established consistent hb conjunct of the HB-model.

The coherent memory use conjunct is defined as follows:

let coherent memory use (Xo, Xw , (“hb”, hb) :: ) =

(* CoRR *)

( ¬ ( ∃ (a, b) ∈ Xw .rf (c, d) ∈ Xw .rf .

(b, d) ∈ hb ∧ (c, a) ∈ Xw .mo ) ) ∧

(* CoWR *)

( ¬ ( ∃ (a, b) ∈ Xw .rf c ∈ Xo.actions .

(c, b) ∈ hb ∧ (a, c) ∈ Xw .mo ) ) ∧

(* CoRW *)

( ¬ ( ∃ (a, b) ∈ Xw .rf c ∈ Xo.actions .

(b, c) ∈ hb ∧ (c, a) ∈ Xw .mo ) ) ∧

(* CoWW *)

( ¬ (∃ (a, b) ∈ hb. (b, a) ∈ Xw .mo) )

All of the relations that make up the four coherence shapes are subsets of tot. The

tot-consistent-tot conjunct of the SC-model’s consistency predicate provides that tot is

transitive and irreflexive, so the CoRW and CoWW shapes are clearly forbidden, and the

CoRR and CoWR shapes would violate the tot-consistent-rf conjunct if they existed, so

those shapes are absent as well.

The rmw atomicity conjunct is defined as follows:

let rmw atomicity (Xo, Xw , ) =

∀ b ∈ Xo.actions a ∈ Xo.actions .

is RMW b −→ (adjacent less than Xw .mo Xo.actions a b = ((a, b) ∈ Xw .rf ))

Given a read-modify-write action, r, there are two directions to establish. In the first,

there is a reads from edge to r, and we must show that r reads the immediately preceding

write in modification order. This follows from the tot-consistent-rf conjunct of the SC-

model’s consistency predicate together with the definition of modification order from Xwp .
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In the other direction, if there is an immediately preceding write in modification order,

then we must show that r reads from that write. This follows from the tot-consistent-

rf and tot-det-read conjuncts of the SC-model’s consistency predicate together with the

definition of modification order from Xwp

The sc accesses sc reads restricted conjunct is defined as follows:

let sc accesses sc reads restricted (Xo, Xw , (“hb”, hb) :: ) =

∀ (w , r) ∈ Xw .rf . is seq cst r −→

( is seq cst w ∧ (w , r) ∈ Xw .sc ∧

¬ (∃ w ′ ∈ Xo.actions .

is write w ′ ∧ (loc of w = loc of w ′) ∧

(w , w ′) ∈ Xw .sc ∧ (w ′, r) ∈ Xw .sc ) ) ∨

( ¬ (is seq cst w) ∧

¬ (∃ w ′ ∈ Xo.actions .

is write w ′ ∧ (loc of w = loc of w ′) ∧

(w , w ′) ∈ hb ∧ (w ′, r) ∈ Xw .sc ) )

This conjunct restricts which writes an SC read may read from. There are two cases:

one for reading from an SC write and the other for reading from a non-SC write. Both

cases forbid intervening writes in some combination of happens before and SC order, two

relations that are subsets of tot. To see that the conjunct is satisfied, observe that the tot-

consistent-rf conjunct of the SC-model’s consistency predicate forbids such tot-intervening

writes.

All of the conjuncts of the HB-model’s consistency predicate have been shown to hold,

so the lemma holds.

⊓0

A Racy Program in the HB-model is Racy in the SC-model

In this case, we start with a consistent execution in the HB-model, X = (Xo,Xw , rl), with

a fault that leads to undefined behaviour. We need to construct a (possibly quite different)

consistent execution in the SC-model, X ′, that has fault that leads to undefined behaviour.

The proof will proceed as an induction over execution prefixes, and this induction requires

the additional restriction that the executions of the program are bounded in size. This is

guaranteed by the bounded executions conjunct of tot condition.

Define a single fault to be an indeterminate read, the second lock in a double lock or

an unlock with no lock sequenced before it, and a double fault to be an unsequenced race,

a data race or two adjacent unlocks in lock order.

In the proof below, it is necessary to add actions to a consistent execution prefix in

the SC-model. On adding an action, we would like to identify a consistent execution that
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incorporates the new action. This causes a problem: having received the underlying pre-

execution from the HB-model or in the inductive step, in the presence of races the values

attached to reads and the outcome of locks may not be consistent in the SC-model. We

use our assumption of receptiveness over the thread-local semantics to choose a consistent

value or lock outcome. Recall receptiveness:

let

receptiveness opsem =

∀ p Xo A a.

is prefix opsem p Xo A ∧

a ∈ fringe set Xo A ∧

(is read a ∨ is successful lock a)

−→

∀ v .

let a ′ = replace read value a v in

∃ Xo ′.

is prefix opsem p Xo ′ A ∧

a ′ ∈ fringe set Xo ′ A ∧

same prefix Xo ′ (pre execution plug Xo a a ′) A

In particular, we need to choose a value or lock outcome that will be consistent. Given

a consistent prefix and an action in its fringe set, in order to add the action, we first append

the new action to the end of tot. In the case of reads, if there is a preceding write to the

same location, we set the value to that of the immediately preceding write, and choose

an arbitrary value otherwise. In the lock case, we set the lock outcome to blocked. Then

we produce an execution witness consisting of the original execution witness over the

prefix, with the new action appended to tot, and a new reads-from edge if the new action

was a read with a preceding write action. Receptiveness provides that this new extended

pre-execution is a prefix of some pre-execution accepted by the thread-local semantics.

Lemma 8. For a program that observes tot condition, given a consistent execution X in

the HB-model with a fault that leads to undefined behaviour, there exists a fault-free prefix

containing all of the happens-before predecessors of a single or double fault.

Proof. [This describes exists first fault hb prefix and

fault then exists hb minimal fault in the formal proofs [2])] ] The execution

X has at least one fault. Identify actions f and g, where either f is a single fault, or

f does not happen before g, f and g together participate in a double fault, and if that

fault is an unlock fault, g is ordered before f in lock order.

Define a subset of the actions, B, whose members are the happens-before-predecessors

of f if f is a single fault, or the happens-before-predecessors of f and g if together they

form a double fault.
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Now define another set, Fps , the set of subsets of B whose elements are precisely the

happens-before predecessors of a single fault or of the two actions that participate in a

double fault. Fps is non-empty: B is a member. It is finite: the action set is finite, B is

a subset of that, and Fps is a subset of the power set of B. The subset relation is acyclic

over the elements of Fps , so we can find a minimal element in the set, minFp. There

are no single or double faults in minFp, otherwise, it would not be minimal. minFp is

a prefix over the execution: it is a subset of the actions, it is happens-before and sbasw

downclosed and it is finite. We are done: minFp is the prefix we required. ⊓0

Lemma 9. Adding an action to a prefix from its fringe set produces a new prefix.

Proof. [This describes add from fringe set prefix in the formal proofs [2])] ] Recall the

definition of the fringe set: it is the minimal actions in happens-before that are not part

of the prefix. Adding one of these actions keeps the set of actions downclosed, it remains

finite, and the new action is from the action set of a pre-execution that the thread-local-

semantics accepts, as required. ⊓0

Lemma 10. Given a consistent prefix of some program in the HB-model, XA′, adding an

action to the prefix from its fringe set, with an adjusted value as specified above, produces

a new prefix with a consistent execution, XA′1 .

Proof. [This describes add then tot consistent in the formal proofs [2])] ] Construct the

new prefix execution as specified above. The tot-assumptions well-formed-threads, well-

formed-rf, consistent-tot, tot-consistent-rf, tot-det-read and tot-consistent-locks conjuncts

of the SC-model hold by construction. ⊓0

Theorem 11. For a program that observes tot condition, given a consistent execution X

in the HB-model with a fault that leads to undefined behaviour, there exists an execution

X ′ in the SC-model with a fault that leads to undefined behaviour.

Proof. [This describes exists tot consistent with fault, exists tot faulty prefix

and exists min fault tot prefix in the formal proofs [2])] ] We use Lemma 8 to identify

a fault-free prefix of a single fault f or a double fault between f and g. We then restrict

the components of the execution X to the prefix actions to produce an execution XA.

XA is consistent by inspection of each of the conjuncts in the consistency predicate in

the HB-model. We appeal to Lemma 5 to identify an execution, XA′, of the same prefix

restricted pre-execution in the SC-model, with the same reads from relation and a total

order that contains both happens-before and the SC-order of XA.

Note that in the single fault case, there is a pre-execution where f is in the fringe set

of the prefix covered by XA′, and in the double fault case, there is a pre-execution with

both f and g in its fringe set.

Next, use Lemma 10 to add in the action f if f is a single fault, or g and then f if not,

giving a consistent prefix, XA′1 , that contains the value-adjusted actions f ′ or f ′ and g′

whose precursors exhibited a fault in the HB-model.
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Now for each sort of fault, we show that either f ′ or g′ and f ′ still exhibit a fault

in the SC-model. If f was an indeterminate read in X then the original happens-before

downclosed prefix of f contained no writes to the same location, so when XA′1 was

constructed, f ′ would remain indeterminate.

For a lock fault f , the sequenced-before preceding lock, al, is in the happens-before

downclosed prefix of f , and is therefore in XA′1 . If there were a tot-intervening unlock,

au, in XA′1 , then au would certainly be lock-ordered before f in X. Lemma 2 implies

that au must be lock-ordered after al, contradicting the fact that f is a lock-fault, so we

have that f ′ is still a lock fault in the SC-model.

For an unlock fault f , there is no sequenced-before preceding lock at the same location.

Construction of the extended execution XA′1 implies that there is no sequenced before

preceding lock before f ′ either, so the fault remains.

For an unsequenced race between f and g, construction of the extended execution XA′1

implies that there is no sequenced before edge between f ′ and g′ and the unsequenced

race remains.

For a data race between f and g, construction of the extended execution XA′1 implies

that the two actions are adjacent in tot, so a data race remains in the SC-model between

f ′ and g′.

These four cases establish that the SC-model prefix XA′1 contains a fault. We must

now extend the prefix execution to show the existence of an execution of the original

program that has a race.

Lemma 10 tells us that if there are actions in the fringe set of a prefix then we can add

them and get a larger prefix execution. This larger execution leaves the relations over the

actions of the original prefix unchanged, so any faults within the prefix are preserved.

We shall show by induction that for any n, there is either a racy consistent execution

of the program in the SC-model with fewer than n actions, or there is a racy prefix of

at least n actions. We have already established the base case with XA′1 , and we can

freely add actions from the fringe set in the inductive step, if they exist. If they do not

exist, then the prefix covers all of the actions, and we have racy consistent execution of

the program, as required.

The tot-model condition requires all executions of a particular program to be bounded

by some number N , so we chose an n greater than N , then we have witnessed a racy

consistent execution of the program in the SC-model, as required. ⊓0

A Racy Program in the SC-model is Racy in the HB-model

In this case, we start with a consistent execution in the SC-model, X = (Xo,Xw , rl),

with a fault that leads to undefined behaviour. We need to construct a (possibly quite

different) consistent execution in the HB-model, X ′, that has fault that leads to undefined

behaviour. Again, the proof will proceed as an induction over execution prefixes, and
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this induction requires the additional restriction that the executions of the program are

bounded in size. This is guaranteed by the bounded executions conjunct of tot condition.

In the proof below, it is necessary to add actions to a consistent execution prefix in

the HB-model. On adding an action, we would like to identify a consistent execution

that incorporates the new action. As in the previous direction, we use our assumption of

receptiveness over the thread-local semantics to choose a consistent value or lock outcome

for reads and locks.

Given a consistent prefix and an action in its fringe set, we must add the action to

the prefix to produce a new consistent prefix. How we do this depends on what sort of

action it is. An unlock action is added to the end of lock order. The outcome of a lock

action is first set to blocked, then the action is added to the end of lock order. If it has a

visible side effect, the value of a non-atomic load action is set to the value of one of the

visible side effects and a reads-from edge is added from the write to the read. If there

is no visible side effect, then the load is added with no change to the execution witness.

A store at a non-atomic location or a blocked read-modify-write action is added with no

change to the execution witness. For atomic reads, we first change the value of the read

to the value of the maximal write at the same location, and add an edge from the write

to the read to the reads-from relation. Then, for fences or atomic accesses, if the access

has memory order seq cst, we add the action to the end of SC order. If the access is a

write, then we add the action to the end of modification order.

Receptiveness provides that this new extended pre-execution is a prefix of some pre-

execution accepted by the thread-local semantics.

Lemma 12. Adding an action to a prefix from its fringe set produces a new prefix.

Proof. [This describes add from fringe set prefix in the formal proofs [2])] ] Recall the

definition of the fringe set: it is the minimal actions in happens-before that are not part

of the prefix. Adding one of these actions keeps the set of actions downclosed, it remains

finite, and the new action is from the action set of a pre-execution that the thread-local-

semantics accepts, as required. ⊓0

Lemma 13. Given a consistent prefix of some program in the HB-model, XA′, adding an

action to the prefix from its fringe set, with an adjusted value as specified above, produces

a new prefix with a consistent execution, XA′1 .

Proof. [This describes add then hb consistent in the formal proofs [2])] ] Construct

the new prefix execution as specified above. The assumptions, well-formed-threads, well-

formed-rf, locks-only-consistent-locks, locks-only-consistent-lo, consistent-mo, sc-accesses-

consistent-sc, consistent-hb, det-read, consistent-non-atomic-rf, consistent-atomic-rf,

coherent-memory-use, rmw-atomicity and sc-accesses-sc-reads-restricted conjuncts of the

HB-model all hold by construction. ⊓0
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Theorem 14. For a program that observes tot condition, given a consistent execution X

in the SC-model with a fault that leads to undefined behaviour, there exists an execution

X ′ in the HB-model with a fault that leads to undefined behaviour.

Proof. [This describes tot exists minimal translated race and no tot hb translated race in

the formal proofs [2])] ] The execution X has at least one fault. Recall that the consistency

predicate gives that tot is acyclic and has finite prefixes. Find the tot-minimal single or

double fault where either f is the tot-minimal single fault, or g is tot-before f , f and g

together participate in a tot-minimal double fault.

Define A as the set of tot-predecessors of f . The set A forms a prefix over X: tot has

finite prefixes and both sequenced-before and additional-synchronises-with are subsets of

tot.

Restrict the components of the execution X to the prefix actions to produce an ex-

ecution XA. XA is consistent by inspection of each of the conjuncts in the consistency

predicate in the SC-model. Use Lemma 7 to identify an execution, XA′, of the same

prefix restricted pre-execution in the HB-model, with the same reads from relation and

execution-witness relations that are projected from the total order of XA. Note that in

the single fault case, there is a pre-execution where f is in the fringe set of the prefix

covered by XA′, and in the double fault case, there is a pre-execution with both f and g

in its fringe set.

Next, use Lemma 13 to add in the action f if f is a single fault, or g and then f if not,

giving a consistent prefix, XA′1 , that contains the value-adjusted actions f ′ or f ′ and g′

whose precursors exhibited a fault in the tot-model.

Now for each sort of fault, we show that either f ′ or g′ and f ′ still exhibit a fault in the

HB-model. If f was an indeterminate read in X then the original tot downclosed prefix

of f contained no writes to the same location, so when XA′1 was constructed, f ′ would

remain indeterminate.

For a lock fault f , the sequenced-before preceding lock, al, is in the tot downclosed

prefix of f , and is therefore in XA′1 . If there were a lock-order-intervening unlock, au,

in XA′1 , then au would be tot-intervening between al and f in X, by construction of the

execution witness. This would contradict the fact that f is a lock-fault, so we have that

f ′ is still a lock fault in the HB-model. For an unlock fault f , there is no sequenced-before

preceding lock at the same location. Construction of the extended execution XA′1 implies

that there is no sequenced before preceding lock before f ′ either, so the fault remains.

For an unsequenced race between f and g, construction of the extended execution XA′1

implies that there is no sequenced before edge between f ′ and g′ and the unsequenced race

remains. For a data race between f and g, the construction of the extended execution

XA′1 added g just before f . One of the two actions is non-atomic, so the two actions

cannot synchronise, and they remain unordered by happens before in XA′1 , forming a

data race in the HB-model.
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These four cases establish that the HB-model prefix XA′1 contains a fault. We must

now extend the prefix execution to show the existence of an execution of the original

program that has a race.

Lemma 13 tells us that if there are actions in the fringe set of a prefix then we can add

them and get a larger prefix execution. This larger execution leaves the relations over the

actions of the original prefix unchanged, so any faults within the prefix are preserved.

The remaining steps in the proof are precisely the same as those of the proof of

Lemma 11. ⊓0

6.6 Linking the three strands of equivalence

This section presents three results that link the three strands of equivalences. These

results complete the overview graph:

standard model

with consume

T. 1

sc fenced

T. 2

sc accesses

T. 3

release acquire sc

T. 9

release acquire fenced

T. 4

sc only

T. 27

release acquire relaxed

T. 5

relaxed only

T. 6

release acquire

T. 28

locks only

T. 7

single thread

T. 8

T. 12

T. 10

total

T. 13

T. 29

T. 11

The first two results rely on the following observation: where the arrows are directed in

the graph, the model condition of the destination of the edge is strictly stronger than the

origin. We can use this property to chain equivalences back through directed edges in the

graph to show, for instance, that for programs meeting the sc-only model condition, the sc-

only memory model is equivalent to the sc-fenced memory model. With this observation,
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we need only show that the sc-only model condition is stronger than the sc-accesses model

condition to establish the first result:

Theorem 14.

sc accesses

sc only

(∀ opsem p.

statically satisfied SC condition opsem p −→

(behaviour SC memory model SC condition opsem p =

behaviour sc accesses memory model sc accesses condition opsem p))

The sc-accesses model condition admits programs that use the release, acquire, relaxed

and SC atomics, whereas the sc-only model condition allows only SC atomics, and is

therefore strictly stronger. Appealing to Theorems 3, 9 and 12 completes the equivalence

proof.

The second result is similar: the stronger protocol implies equivalence through the

graph.

Theorem 15.

(∀ opsem p.

statically satisfied release acquire condition opsem p −→

(behaviour release acquire memory model release acquire condition opsem p =

behaviour release acquire relaxed memory model release acquire relaxed condition opsem p))

release acquire relaxed

release acquire

In the final result, neither the total model condition nor the locks-only model condition

is stronger than the other, so we adopt their conjunction as the condition on programs:

Theorem 16.

total

locks only

(∀ opsem p.

opsem assumptions opsem ∧

statically satisfied tot condition opsem p ∧

statically satisfied locks only condition opsem p

−→

(rf behaviour locks only memory model locks only condition opsem p =

rf behaviour tot memory model tot condition opsem p))
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Together the two model conditions are stronger than the model conditions of their

predecessors in the overview graph, and the two models are equivalent for programs that

satisfy the combined condition.
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Chapter 7

Compilation strategies

This chapter presents joint work with Kayvan Memarian, Scott Owens, Susmit Sarkar,

and Peter Sewell, presented in POPL 2011 [28], POPL 2012 [26], and PLDI 2012 [96].

In Chapter 2, we introduced compilation mappings from C/C++11 atomic library

calls to machine code. These mappings correspond to the transformations that occur in

compilation. The mappings are simplistic: compilers do not simply map from the source

program to machine instructions — they perform many optimisations that can affect the

memory behaviour of the program. A sound mapping shows that it is at least possible to

compile programs correctly to a given hardware architecture.

Early iterations of these mappings [107, 78, 106] formed an intrinsic part of the design

process of the language. For each accessor function in the atomic library and each choice

of memory order parameter, there is a different fragment of machine code that implements

the function on each hardware architecture. The production of these tables requires one to

settle on a design for the C/C++11 atomics that is both efficiently implementable across

the diverse target architectures, and that provides usable abstractions for programmers.

These mappings explain the design of the language: they make it clear why the more

intricate features exist. The C/C++11 design would be needlessly complex if it tar-

geted only x86 because the most complicated memory accesses have implementations

that behave in a constrained and simple way, and provide only questionable benefit to

performance (perhaps through more agressive optimisation) over the simpler features; pro-

grammers would be wise to simply ignore consume and relaxed atomics. The Power and

ARM mappings have different machine-code implementations for relaxed and consume

atomics that makes their purpose clear: on these architectures, their implementations do

without barriers (and the associated performance detriment) that are necessary in the

implementation of acquire and release atomics. By linking the atomic functions to the

barriers that are necessary to implement them, the mappings also support the implicit

language-level assumption about performance: relaxed and consume accesses are cheap,

release-acquire less so, SC atomics are expensive, and locks more so.

199
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This chapter presents theorems that establish the soundness of the mappings for x86

and Power. These results show that it is possible for a compiler to correctly implement

the language above the x86 and Power architectures. They do not apply to compilers

that optimise the atomics or fences, but should be applicable to compilers that optimise

non-atomic blocks of code (if an optimisation affects the program’s semantics, then there

was a race). In addition to implementability, we establish that the mappings are locally

optimal in the following sense: if they were weakened in any way, they would be unsound.

This establishes that the C/C++11 design is not overly complicated — for instance on

Power, relaxed, release-acquire and SC atomic accesses each map to different snippets of

machine code, the relative cost of which is as expected.

We include sketch proofs of the part of the mapping that covers loads, stores and

fences. For the complete proofs and the part of the mappings that include locks and

atomic compare-and-swap-like features, see the papers [28, 26, 96].

7.1 x86 mapping correctness

The mapping from C++11 atomics to x86 machine code is presented below:

C/C++11 x86

load relaxed MOV (from memory)

load consume MOV (from memory)

load acquire MOV (from memory)

load seq cst MOV (from memory)

store relaxed MOV (into memory)

store release MOV (into memory)

store seq cst MOV (into memory); MFENCE

fence acquire ⟨ignore⟩

fence release ⟨ignore⟩

fence acq rel ⟨ignore⟩

fence seq cst MFENCE

Note that most of the C/C++11 features can be implemented with plain loads and

stores on x86 (MOVs to and from memory). This is because the x86 memory model pro-

vides stronger ordering guarantees than the C/C++11 memory model: the x86 memory

model admits only store-buffering relaxed behaviour (see Chapter 2 for details), but only

programs that use SC atomics or SC fences forbid store buffering at the language level,

so only these features require the addition of hardware fences. The mapping above is

only one possible implementation of the language, and it embodies a design decision. We

need to emit an MFENCE either after each SC store or before each SC load. The mapping

chooses to apply the fence to the store for performance, on the assumption that many

programming idioms feature infrequent stores and frequent loads.
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This section describes a theorem that is stated in terms of the axiomatic x86-TSO

model of Owens et al. [99, 91, 104]. The model takes a program and produces an x86 event

structure, Ex86, a set of events ordered by program order — the analogue of a C/C++11

pre-execution. This event structure is then combined with a reads-from relation and x86

memory order, a relation that totally orders writes, to form an x86 execution witness,

Xx86. The model constrains the memory order and reads from relations that can be

observed for a given event structure.

We would like to show that, for any program, the mapping above preserves its seman-

tics in C/C++11 over the x86 architecture. In order to do this, we start with the set of

pre-executions of the program in the C/C++11 model, then for any pre-execution, Xpre,

we show that if we (non-deterministically) translate the pre-execution to an x86 event

structure, Ex86, execute that Ex86 according to the x86 axiomatic model to get an exe-

cution witness, Xx86, and then translate the x86 execution witness back to a C/C++11

execution, Xwitness, then Xwitness is a consistent execution of the pre-execution in the

C/C++11 memory model. The graph below represents this theorem, with the dotted

arrow representing the implied relationship:

Xpre
consistent execution!!

mapping

""

Xwitness

Ex86 valid execution
!! Xx86

mapping−1

##

The translation of a C/C++11 pre-execution to an x86 event structure is not direct:

the sequenced-before relation of a C/C++11 pre-execution is partial, whereas x86 event

structures have a total program order relation over the events of each thread. In translat-

ing from C/C++11 to x86, we must arbitrarily linearise the translated events to produce

a valid x86 program order. The following example highlights a choice of program order

with dotted lines for a given pre-execution, and exercises some of the cases of the mapping:
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a:W x=1 d:R y=1

b:W w2=0

b:W w1=1

c:R y=0

c:W y=1

e:mfence

e:W z=1

a:WNA x=1 d:RACQ y=1

b:WNA w=1

c:RMWREL y=0/1

e:WSC z=1

sb

po
po

sb

po po

po

locked

x86 eventsC++0x actions

Note the translation of the single non-atomic write of w to a pair of writes to addresses

w1 and w2 in the x86 event structure. We have to record the choices of data layout that

occur in translation. To this end, we define a finite map from sets of x86 addresses (each

set corresponding to a C/C++11 location), to x86 values. The mapping must be injective,

each C/C++11 location must have an entry in the map, the addresses of any two entries

must be disjoint, and C/C++11 atomic locations must have singleton address sets in their

entries in the map. Now we can state the theorem that shows correctness of the mapping

— see [39] for the precise definitions, statement, and proof:

Theorem 15. Let p be a C++ program that has no undefined behaviour. Suppose also

that p contains no SC fences, forks, joins, locks, or unlocks. Then, if actions, sequenced-

before, and location-kinds are members of the Xpre part of a candidate execution resulting

from the thread-local semantics of p, then the following holds:

For all compilers, C, finite location-address maps, and x86 executions Xx86, if C pro-

duces only event structures that correspond to the application of the mapping and finite

map to Xpre, and Xx86 is a valid execution of such an event structure in the x86 axiomatic

model, then there exists a consistent execution of Xpre, Xwitness, in the C/C++11 model.

Proof outline. We construct an Xwitness from Xx86 by reversing the mapping, lifting the

reads-from and memory-order relations to relations over Xpre and projecting the second

to a per-location relation over the writes. This gives us the reads-from and modification

order relations of Xwitness. We construct SC order by lifting x86 memory order to a

relation over Xpre and then projecting it to a relation over the SC atomics. This relation

will not necessarily be total over the SC atomics, so we linearise it using a proof technique

from [89]. It remains to show that Xwitness is a consistent execution.

The rest of the proof relies on two insights: first, x86 program order and memory order

lifted to the C/C++11 actions cover the happens-before relation, and second, either reads
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are consistent when translated, or there is a racy execution of the program. The first has

been established by Owens with the HOL4 theorem prover, and the second by hand.

The proof of consistency involves proving each of the conjuncts of the consistency

predicate. Consider the consistent-non-atomic-rf conjunct as an example. We must show

that for a reads-from edge at an atomic location from w to r, w is a visible side effect

of r. There is no happens-before intervening write to the same location: if there were,

then there would be an intervening write in some combination of x86 program-order

and memory-order, and the reads-from edge would not be valid in the x86 model, a

contradiction. We must also show the existence of a happens-before edge from w to r.

Valid executions in the x86 model are all allowed to read from writes in a way that is

not consistent in the C/C++11 model. In particular, reads from edges might be created

from writes that would be disallowed in C/C++11 or non-atomic reads-from edges might

not be well formed for multi-address accesses. Call either behaviour a fault. We shall

show that if there is a fault, then there was a race in the original program, forming a

contradiction. Start by identifying a minimum fault, following [89]. Create a prefix of the

fault. This prefix is consistent in the C/C++11 memory model. Add the actions that led

to the fault, showing that these actions constitute a race in the C/C++11 model. Now

complete the execution to produce a consistent execution with a race. This contradicts

the premise of the theorem. ⊓0

7.2 Power mapping correctness

The mapping from C++11 atomics to Power machine code is presented below:

C/C++11 Power

load relaxed ld

load consume ld + keep dependencies

load acquire ld; cmp; bc; isync

load seq cst hwsync; ld; cmp; bc; isync

store relaxed st

store release lwsync; st

store seq cst hwsync; st

fence acquire lwsync

fence release lwsync

fence acq rel lwsync

fence seq cst hwsync

On the Power architecture, plain loads and stores are performed with the ld and

st instructions. Contrast the mapping with that of x86: here, we have to insert addi-

tional synchronisation in the implementation of acquire and release atomics and fences,
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and consume atomics require the compiler to preserve any following data or control de-

pendencies. The architecture admits a variety of relaxed behaviour, and the hardware

synchronisation in each row of the mapping is chosen to forbid relaxed behaviour as re-

quired by the language memory model. Again, this is not the only mapping that would

preserve the semantics of the language, but it is locally-optimal: weakening the hardware

synchronisation in any row of the mapping would leave it unsound.

7.2.1 Informal correctness of the mapping

This section presents several examples that exercise the compilation mapping, arguing

that in each the semantics of the C/C++11 program is preserved.

The happens-before relation is central to the C/C++11 memory model. In particular,

release-acquire synchronisation enables one to program using the message-passing idiom

by reasoning about dynamically-created happens-before edges in the executions of the

program. The first example is a C++11 variant of the message-passing test; we use it to

explore how the mapping preserves the semantics of release-acquire synchronisation:

int x;

atomic<int> y(0);
// sender thread T0

x=1;

y.store(1,memory_order_release);
// receiver thread T1

while (0==y.load(memory_order_acquire)) {}

int r = x;

Applying the mapping to this program yields the following Power assembly program:

y=0

T0 T1

r1=1; r2=&x; r3=&y r2=&x; r3=&y

a: stw r1,0(r2) write x=1 loop:

b: lwsync from write-rel d: lwz r4,0(r3) read y

c: stw r1,0(r3) write y=1 e: cmpwi r4,0

f: beq loop

g: isync from read-acq

h: lwz r5,0(r2) read x

The program is presented in Power assembly syntax: stw is a store, lwz is a load, cmpwi

is a compare-immediate, and beq is a conditional branch. The loads and stores correspond

to those present in the original C/C++11 program, and the additional instructions are

included by the mapping. On Thread 0, the lwsync is added in the translation of the

release write, and on Thread 1, the compare-branch-isync trio, called a control-isync,
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arises from the read acquire.

In the naming convention established by Maranget et al. [71], this Power test is called

MP+lwsync+ctrlisync: the test shape is message-passing (MP), there is an lwsync be-

tween the left-hand pair of actions and there is a control dependency followed by an isync

between the right-hand pair. See Maranget et al. [71] for other variants of this test, other

tests, and experimental data on observation of relaxed behaviour on various hardware.

In C/C++11, Thread 1 may not break out of the while loop and then fail to see

Thread 0’s write of x. In the translated Power program, the synchronisation instructions

added by the mapping must prevent this behaviour. Chapter 2 described the three ways

that the Power architecture might allow the relaxed behaviour: the writes of Thread 0

might be committed out of order, they might be propagated out of order, or the second

read on Thread 1 might be speculated. The additional instructions included by the map-

ping forbid all three behaviours: the lwsync prevents commit and propagation reordering

of the writes in Thread 0, and the control-isync prevents read speculation on Thread 1.

Note that if either the lwsync or the control-isync were removed or replaced with weaker

synchronisation, then the relaxed behaviour would be allowed.

Now we explore the implementation of release-consume synchronisation with the fol-

lowing example C/C++11 program:

int x;

atomic<int *> p(0);
// sender thread

x=1;

p.store(&x,memory_order_release);
// receiver thread

int* xp = p.load(memory_order_consume);

int r = *xp;

Once again, the behaviour that the language forbids is the outcome where Thread 1

first reads the address of x, yet fails to see Thread 0’s write of. The corresponding Power

program following the application of the mapping is:

p=0

T0 T1

r1=1; r2=&x; r3=&p r3=&p

a: stw r1,0(r2) write x=1 d: lwz r4,0(r3) read p

b: lwsync from write-rel e: lwz r5,0(r4) read *xp

c: stw r2,0(r3) write p=&x

This Power test is called MP+lwsync+addr: the test is similar to the

MP+lwsync+isync test above, but the control-isync has been replaced by an address

dependency.
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Thread 0 has an lwsync as in the release-acquire example, and forbids both commit

and propagation reordering as a result, but Thread 1 no longer has a control-isync to

prevent speculation of the second read. In this example, in the cases where Thread 1 sees

the write of p by Thread 0, the address dependency from that read to the second read

prevents speculation, and the relaxed behaviour is forbidden.

The two cases above show that the mapping effectively implements synchronisation

across two threads, but much of the synchronisation in the C/C++11 memory model is

transitive through other happens-before edges, and so far we have not argued that this

transitivity is correctly implemented. The following program, a C++11 variant of ISA2,

explores whether the mapping correctly implements the transitivity of happens-before

through a chain of release-acquire synchronisation:

int x; atomic<int> y(0); atomic<int> z(0);
T0 x=1;

y.store(1,memory_order_release);
T1 while (0==y.load(memory_order_acquire)) {}

z.store(1,memory_order_release);
T2 while (0==z.load(memory_order_acquire)) {}

r = x;

In this program, it would be unsound to optimise the program by reordering any of

the accesses, so we consider the Power execution of a direct mapping of the program. The

mapping introduces lwsyncs and control-isyncs as before. The following Power execution

shows the execution that should be forbidden:

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[z]=1

e: R[z]=1

Thread 2

f: R[x]=0

ctrlisync

lwsync

rf
lwsync

ctrlisyncrf

rf

Thread 1’s control-isync is subsumed by its lwsync, and is not required in the following

reasoning. The control-isync of Thread 2 prevents speculation, so we need only show that

the writes of x and z are propagated to Thread 2 in order. Because of the lwsync, we

know that Thread 0 propagates its writes to Thread 1 in order. We now use cumulativity

to show that the write of x is propagated to Thread 2 before the write of z. In terms

of the lwsync on Thread 1, the write of x is in its Group A, the set of writes that have

already been propagated to the thread. Cumulativity implies that the write of x must

have been propagated to Thread 2 already, before the write of z, as required.

Now consider a C/C++11 program that, according to the memory model, can give

rise to IRIW behaviour:
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atomic<int> x(0); atomic<int> y(0);

T0 x.store(1,memory_order_release);
T1 r1=x.load(memory_order_acquire);

r2=y.load(memory_order_acquire);

T2 y.store(1,memory_order_release);
T3 r3=y.load(memory_order_acquire);

r4=x.load(memory_order_acquire);

The Power analogue of this program allows IRIW behaviour. Full sync instructions

would be required between the loads in order to forbid this. The sync is stronger than

an lwsync: it requires all Group A and program-order preceding writes to be propagated

to all threads before the thread continues. This is enough to forbid the IRIW relaxed

behaviour. If we replace the memory orders in the program above with the seq cst

memory order, then the mapping would provide sync instructions between the reads, and

the IRIW outcome would be forbidden in the compiled Power program, as required.

The examples presented here help to explain how the synchronisation instructions

in the mapping forbid executions that the language does not allow. We can also show

that if the mapping were weakened in any way, it would fail to correctly implement

C/C++11 [26]. The proof of this involves considering each entry in the mapping, weak-

ening it, and observing some new relaxed behaviour that should be forbidden.

For example, consider two of the cases in the mapping in the context of the examples

above. First, if we remove the dependency from the implementation of consume atomics,

then we enable read-side speculation in the message-passing example, and we allow the

relaxed behaviour. Second, if we swap the sync for an lwsync in the implementation of

SC loads, then we would be able to see IRIW behaviour in the example above.

7.2.2 Overview of the formal proof

The proof of correctness of the Power mapping (primarily the work of Sarkar and Memar-

ian) has a similar form to the x86 result at the highest level, but the details are rather

different. The Power model is an abstract machine, comprising a set of threads that

communicate with a storage subsystem. In Chapter 2 the role of each component was ex-

plained: the threads enable speculation of read values, and the storage subsystem models

the propagation of values throughout the processor.

Thread
Write request
Read request

Barrier request

 
Read response
Barrier ack

Storage Subsystem

Thread
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The thread and storage subsystems are labeled transition systems (LTSs). Their

composition uses the following set of transitions:

label ::= Fetch tid ii

— Commit write instruction tid ii w

— Commit barrier instruction tid ii barrier

— Commit read instruction tid ii rr

— Commit reg or branch instruction tid ii

— Write propagate to thread w tid

— Barrier propagate to thread barrier tid

— Satisfy read from storage subsystem tid ii w

— Satisfy read by write forwarding tid ii1 w ii2
— Acknowledge sync barrier

— Partial coherence commit w1 w2

— Register read prev tid ii1 reg ii2
— Register read initial tid ii reg

— Partial evaluate tid ii

Here tid ranges over thread ids, ii over instruction instances, w over write events, rr

over read-response events, barrier over sync or lwsync events, and reg over Power register

names. A Power execution t is simply a trace of abstract-machine states and these labels.

The proof will involve witnessing a C/C++11 execution that is observationally equiv-

alent to a Power execution, and involves mapping between the two sorts of execution.

The mapping between traces and pre-executions is relatively straightforward: the Power

model has notions of program order, data dependency and address dependency, all of

which trivially map to the C/C++11 counterparts: sequenced before and data depen-

dence. Observational equivalence is slightly more subtle because in the Power model,

reads and writes are not modeled by a single transition in an execution. We identify

the Commit write instruction and Commit read instruction transitions with

C/C++11 writes and reads. For observational equivalence, we require the C/C++11

reads-from map to precisely correspond to the Power reads from map over Power events.

We will restrict the compiler in the statement of the proof of correctness of the

mapping, requiring every Power trace of the compiled program to have a correspond-

ing C/C++11 pre-execution and reads-from map such that the pre-execution is admitted

by the thread local semantics, the Power trace corresponds to the application of the map-

ping to the pre-execution, and the reads-from relation is observationally equivalent to

that of the Power trace.

Now we can state the theorem:

Theorem 16. Let p be a C++ program that has no undefined behaviour. Suppose comp



209

is a compiler that satisfies the constraints imposed above. Let p′ be the Power program

produced by compiling p with comp. Then for any Power execution of p′, t, there exists a

pre-execution, Xpre, and execution witness, Xwitness, such that Xpre is a pre-execution of

p according to the thread-local semantics, Xpre and Xwitness form a consistent execution,

and Xpre and Xwitness are observably equivalent to t as defined above.

Proof. The proof of correctness involves using the assumptions on the compiler to find a

pre-execution Xpre and reads-from map that agree with the thread-local semantics and

are observationally equivalent to t. Modification order can be calculated from Power

coherence order: simply take the final set of coherence constraints in t, linearise them

over the actions at each location, and then project out the part of the relation that covers

atomic locations. The calculation of SC order is an arbitrary linearisation of the following

relation:

(posc
t ∪ cosc

t ∪ fr sct ∪ erf sct )∗

Here, posc
t is the projection of program order to events arising from SC actions, and

cosc
t , fr sct and erf sct are similar restrictions of coherence order, from-reads, and reads-from

across two different threads respectively, where from-reads relates reads to the coherence

successors of the write that they read.

Now take the C/C++11 execution comprising Xpre and an execution witness Xwitness,

made up of the reads-from, modification order and SC orders identified above. We need to

show that this pair form a consistent execution, or there is some execution of the program

that has a race.

The proof proceeds by considering each of the conjuncts of the consistency predicate

in turn. Consistency is dependent on the happens-before relation, and linking patterns of

instructions in the Power trace to happens-before edges in the C/C++11 execution will

be essential.

To that end, we define a new relation that identifies inter-thread edges in the Power

trace that induce happens-before edges in the C/C++11 execution. In C/C++11, a

happens-before edge is created from the head of a release sequence to any acquire or

consume read that reads from the sequence. Referring to the mapping, a release write

is preceded in the Power trace by either a sync or lwsync and (ignoring for now read-

modify-writes) the unbroken chain of coherence-order successors on the same thread form

the release sequence. The read must be either an acquire or a consume, so there is either

a dependency or a control-isync following the read. Writing this relation down, using

semicolon for forward composition of relations, gives machine-ithbt :

(

(synct ∪ lwsynct)
refl; coit

∗; rfet ; (ctrlisynct ∪ ddt
∗)refl

)+

Here, coit is the set of coherence edges restricted to pairs on the same thread, and rfet
is the reads from relation restricted to events on different threads. With this definition,
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we know that any inter-thread happens-before edge across two different threads implies

the existence of a machine-ithbt edge between the corresponding Power events.

In the Power trace, the values read and the construction of the coherence order depend

on propagation order. We define a relation prop-before that captures propagation order,

and prove (see [26] for the details) that a machine-ithbt edge implies ordering by prop-

before.

Each of the conjuncts of the consistency predicate can now be considered in turn.

Most of the conjuncts are elided here, but we describe the proofs of two representative

cases: the CoRW case of coherent-memory-use and consistent-non-atomic-rf.

CoRW For the CoRW case of coherent-memory-use, we must prove the absence of the

following shape in the C/C++11 execution:

d:WRLX x=1

b:WRLX x=2 c:RRLX x=2
rf

hb
mo

First suppose the shape exists, seeking a contradiction. Note that between the cor-

responding events of the Power trace, there is a Power reads-from edge matching the

C/C++11 reads from edge and there is either a Power program-order or machine-ithbt
edge corresponding to the happens-before edge. Given these edges, we know that the write

on the left-hand thread is propagated to the right-hand thread before the read is commit-

ted. We also know that the program-order or machine-ithbt edge implies that the read is

propagation-before the write on the right-hand thread, so we have that the left-hand write

is coherence ordered before the right-hand write. Then appealing to the construction of

the execution witness, modification order contradicts this choice of coherence order.

Consistent-non-atomic-rf This conjunct of the consistency predicate requires reads at

non-atomic locations to read from one of their visible side effects. Seeking a contradiction,

assume the contrary. The cases where the read reads a happens-before later or happens-

before hidden write are elided. We consider the case where it reads from a happens-

before-unrelated write.

Such an execution is not consistent according to the C/C++11 memory model, but

we can show that in this case, there is a consistent execution of the original program that

results in undefined behaviour.

First, identify the earliest read in Power trace order that reads from a happens-before

unrelated write. Identify all trace-order predecessors of the read as a prefix trace. Now

add in the read, altering its reads-from edge to read from a visible side effect, if one

exists, or any write if not. In either case, the read now reads from a write that is

consistent according to the C++11 memory model. In the first case, the new reads from
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edge relates a write that races with the original write, and in the second case we have

introduced an indeterminate read — both result in undefined behaviour.

The speculation of reads in the Power model means that the trace-order prefix may

leave out some program-order preceding events. In order for speculation to take place,

these events cannot correspond to SC or acquire actions, so we are free to add them back

in to the prefix. Finally, complete this prefix in such a way that it forms a consistent

C/C++11 execution, and we have the faulting execution of the program we required.

⊓0
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Chapter 8

Library abstraction

This chapter presents joint work with Mike Dodds and Alexey Gotsman.

The C/C++11 memory model is intricate, and it is difficult to reason about even small

programs. If programmers are to use C/C++11, it must be possible to encapsulate and

abstract parts of the program. This chapter explores how this might be accomplished,

introducing tools for concurrent compositional reasoning. We use these tools to specify a

concurrent data structure, the Treiber stack, and prove a implementation correct.

Java’s java.util.concurrent library provides concurrent data structures whose in-

terfaces are simple, yet whose implementations provide high performance. If such a library

were constructed over C/C++11, there would be several choices of how to specify its in-

terface. The simplest approach might be to ask the programmer to adhere to a set of rules

(using a subset of the language, avoiding data races, and so on), provide a high level spec-

ification, and promise sequential consistency. This approach comes with a performance

penalty: for many concurrent programming idioms, SC behaviour is not essential, but the

cost of achieving it is high. A concurrent flag can be compiled very cheaply to x86, for

instance, but if it must have an SC interface, then one must add an expensive MFENCE

barrier. In many cases, the relaxed behaviour may be tolerable, and the performance

degradation unacceptable.

Suppose then, that we would like to provide a relaxed library specification to the

programmer. This specification has to capture more information than an SC specification:

we need to know not just what data will be returned for a given input, but also the relaxed-

memory behaviour of the library: what synchronisation it relies on and what it provides.

There are many ways to write such a specification. One might define a sequential

specification over calls to the library and describe synchronisation between calls separately.

We could describe the specification as an augmentation of the memory model that adds

new rules and relations that govern library calls. In this work we choose to represent the

library specification as a program, albeit one that executes in an extended version of the

C/C++11 memory model. The atomics allow us to conveniently express relaxed memory

213
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behaviour in the specification.

Consider a program composed of a client that makes calls to a library, and suppose

we have two versions of the library code: a specification and an implementation. The

behaviour of the client composed with either version of the library is defined by the set

of executions allowed by the memory model. In each execution, some of the memory

accesses will arise from the client, and some from the library. We define an interface

between the two by inserting new actions at the calls and returns of library functions.

We consider only libraries and clients that access disjoint sets of locations, so there are

no modification-order or reads-from edges between the library and client actions, except

for those that correspond to parameter passing and returning a value.

Now we can define observational refinement of libraries from the perspective of a

client. First we mask the library actions of each execution, preserving just the client and

interface actions. The set of all masked executions allowed by the memory model for a

given client is the client behaviour. Our specifications are programs, so we can execute

clients that call them. If a every client behaviour when composed with the implementation

is admitted by the client composed with the specification, then the implementation refines

the specification.

In this chapter, we provide an abstraction relation that holds between libraries only

when one refines another. To do this, we precisely capture the interaction of a library with

its client context in a history, we define an abstraction relation over sets of histories. We

then prove that if a library implementation’s histories are abstracted by a specification’s

histories then the behaviour of the implementation in an arbitrary client context is a

subset of the behaviour of the specification in the same context. We use this abstraction

theorem to establish the correctness of a Treiber stack.

The formulation of the theorem is less than ideal, in that it fails to support free

composition of programs. The reasons for this weakness lie in the lack of a restriction on

out-of-thin-air values, and in particular self-satisfying conditionals. These limitations are

discussed together with a sketch of the proof of soundness of the abstraction relation.

The work in this chapter covers C/C++11 programs that do not use consume atomics.

The work uses a version of the memory model that is expressed rather differently to the

models of Chapter 3. The model can be found in the paper [25], and is not included here.

Instead, in this chapter we refer to the sc fenced memory model that covers the same

subset of the language features and is intended to match, although we have not formally

established equivalence.

8.1 A motivating example — the Treiber stack

This chapter is guided by an example data structure, the Treiber stack [108]: a non-

blocking concurrent stack with push and pop methods. Our C/C++11 implementation
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struct Node {

int data;

Node *next;

};

atomic Node *T;

void push(int v) {

Node *x, *t;

x = new Node();

x->data = v;

do {

t = loadRLX(&T);

x->next = t;

} while

(!CASRLX,REL(&T,t,x));

}

void init() {

storeREL(&T,NULL);

}

int pop() {

Node *t, *x;

do {

t = loadACQ(&T);

if (t == NULL)

return EMPTY;

x = t->next;

} while

(!CASRLX,RLX(&T,t,x));

return t->data;

}

Figure 8.1: The Treiber stack implementation. For simplicity, we let pop leak memory.

of the Treiber stack, which ignores deallocation, is presented in Figure 8.1.

The stack is represented in the implementation as a linked list of nodes, accessed

through a top pointer, T. Note that the variables in the nodes are not atomic, but T is.

This reflects the fact that calls that access the data structure contend on the pointer rather

than the node data. The initialisation call stores a null value to T with release memory

order. The push call creates a new node, writes data to it, and then tries to insert the node

at the top of the stack. Insertion involves loading T, writing its value to the next pointer

in the node, and then performing a compare-and-swap that will atomically release-write

T with the address of the new node if T still has the same value as was previously loaded.

If the compare-and-swap fails, then there is no write of T, and the load-CAS loop repeats.

The pop call features a similar loop, but here T is loaded initially with the acquire memory

order, and the CAS has relaxed memory order, even on success. In the loop, pop checks

whether T is null, returning empty if it is. Otherwise it reads the node pointed to by T,

and attempts to CAS that node’s next pointer into T. If the CAS succeeds, pop returns

the data of the node, and if not it repeats the loop.

To help abstract the load-CAS-loop programming idiom, used in the push and pop

calls of the implementation of the Treiber stack, we introduce a new construct: the

atomic section. Atomic sections ensure that other actions in the execution cannot be

ordered between those in the atomic section. The rules that support atomic sections

restrict happens-before, modification order and SC order, and are given the paper [25].

The specification of the Treiber stack is presented in Figure 8.2. It abstracts several

details of the implementation. Firstly, the layout of data in memory is no longer explicit;

rather than a linked list of nodes, the specification represents the data as an abstract
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atomic Seq S;

void push(int v) {

Seq s, s2;

if (nondet()) while(1);

atom sec {

s = loadRLX(&S);

s2 = append(s,v);

CASRLX,REL(&S,s,s2);

}

}

void init() {

storeREL(&S,empty);

}

int pop() {

Seq s;

if (nondet()) while(1);

atom_sec {

s = loadACQ(&S);

if (s == empty)

return EMPTY;

CASRLX,RLX(&S,s,tail(s));

return head(s);

}

}

Figure 8.2: The Treiber stack specification.

sequence, S, of values. Three mathematical functions take a sequence as an argument:

append returns a new sequence with the value passed as an argument appended to it,

head returns the head of the sequence, and tail returns the tail. Each of the library

calls produces a locally modified version of the sequence and then atomically overwrites

the sequence S. These atomic accesses of the sequence encode the synchronisation that is

guaranteed by the specification with the choices of their memory-order arguments (this

is discussed in detail in the next section). Note the release memory order of the CAS

in the push call and the acquire-load in pop. The atomic section is present to help to

abstract the load-CAS-loop idiom. The atomic section ensures that there can be no write

that intervenes between the load at the start and the CAS at the end of each section.

This means that the CAS in each section will always succeed. We cannot replace it with

a release store in the specification, because we are using the additional synchronisation

through the release sequence. In the implementation, the load-CAS loop in either push or

pop may be starved indefinitely, leading to divergence. This is modeled in the specification

with nondeterministic divergence.

Note that the implementation does not behave in a straightforward sequentially con-

sistent manner, even when we consider only the values returned by pop. Consider the

following program that uses two instances of the Treiber stack, A and B:

Store Buffering (MP):

A.push(1); B.push(1);

r1 = B.pop(); r2 = A.pop();

Both A and B are initially empty. Each thread pushes an item on to one of the two

stacks and then pops from the other, storing the result into a thread-local variable. If
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we took a naive specification of the stack in an interleaved memory model, this program

would never produce outcomes where both the pop of A and the pop of B return empty, but

the relaxed implementation allows this behaviour. This is the analogue of store-buffering

relaxed behaviour, observable at the interface to the Treiber stack. To forbid this non-SC

behaviour, additional synchronisation would be required in the implementation, reducing

performance. It is therefore desirable to be able to express relaxed specifications of the

data structure. In doing so, we admit implementations with higher performance.

We will show that the implementation does meet the specification by introducing an

abstraction relation, proving it sound, and applying it to the Treiber stack. We first

motivate and define some of the concepts that the abstraction theorem relies on.

8.2 Defining library abstraction

This section introduces an abstraction relation that relates one piece of code to another.

Stating the definition of the abstraction relation requires first presenting a series of other

definitions on which it is based. The first captures the behaviour of a piece of code at its

interface.

8.2.1 Motivating the definition of a history

We would like to precisely capture the interaction of a library with its client context. To

motivate our definition, we explore the behaviour of the implementation of the Treiber

stack. We first augment the thread-local semantics so that it recognises each thread’s

entry and exit from library functions. We have it mark the boundaries between the

library and the client in executions with new actions, call and return. Each carries the

values that are passed to and returned from the function, respectively. With these new

actions, we will explore several examples in order to understand how the execution of the

Treiber stack impacts an arbitrary client context.

Data consistency To be useful, the specification will have to restrict the values that

can be returned by pop, so that the data structure behaves as a stack. As noted in the

previous section, specifications may admit values that result from relaxed executions.

Synchronisation The memory orders in the implementation presented above are care-

fully chosen to create synchronisation from code that precedes a call to push to code

that follows the call to pop that returns the push’s data. This relies on release-acquire

synchronisation to guarantee that the message-passing programming idiom is supported.

Consider the following program that uses the Treiber stack, on the left below:
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Message passing (MP):

int a, b, x=0;

x=1; do {a=pop();}

push(&x); while

(a==EMPTY);

b=*a;

storeNA(&x,0)

storeNA(&x,1)
ib

loadNA(&x,1)

rf,hbcall push(&x)
sb

ret pop(&x)
sb

rmwRLX,REL(&S,i,j)

loadACQ(&S,j)
sb sb

rf

On the left-hand thread, the program writes to x and then pushes the address of x

onto the stack. The right-hand thread repeatedly pops the stack, waiting for data. When

data arrives, the thread reads from the address returned by the pop. This program relies

on the stack’s internal synchronisation: there must be a happens-before edge between the

store and the load of x, or the program has a race.

In the example execution above, the entry to the push call and return from the pop

call are identified with the new abstract actions, and all but the read-modify-write action

in the push, and the load acquire action in the pop are elided. The right-hand thread pops

the data pushed by the left-hand thread. The successful CAS in the push call results in

a read-modify-write action with release memory order, and the successful pop loads with

acquire memory order. These two actions synchronise, and the transitivity of happens-

before through sequenced-before and synchronises-with means that the store of x happens

before the load of x, avoiding a data race.

The specification of relaxed data structures will have to describe the synchronisation

that the client can rely on. If synchronisation had not been provided by the imple-

mentation in the case above, the client would have had a race, and the program would

have undefined behaviour. We define a new guarantee relation, G, that captures library-

induced synchronisation. More precisely, G is the projection of happens-before created

by internal synchronisation of the library to the call and return actions. Returning to

the message-passing example above, we see that the internal synchronisation creates a

guarantee edge in the execution from the call action to the return action.

Ordering without synchronisation For simplicity, we consider library code that only

interacts with its client through call parameters and return values; i.e. the memory

footprint of the library and its client are disjoint. One might expect this assumption

to reduce the effect of the library on the client to the return values together with any

synchronisation that the library creates between library calls, but this is not the case.

In C/C++11, the library interacts with its client in another more subtle way. In an

execution, the actions that result from library calls might be related by reads-from, lock-

order, modification-order or SC-order edges. There are rules in the model that restrict

how these edges can be combined with happens-before in a consistent execution. For

example, recall that the coherence requirements forbid modification-order edges from
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opposing happens-before edges. In the program below, the calls to lib each contain a

write to the same location that must be ordered by modification order. Consider the

execution where the modification-order edge points from left to right, depicted on the

right below. If the load of x in the client context were to read from the store of x, then

the actions would synchronise, and the transitivity of sequenced-before and synchronises-

with would create a happens-before edge opposing the modification order edge. The two

edges together violate the CoWW coherence axiom, so this is not a consistent behaviour

of the program, and will not be observed.

Deny (DN):

storeREL(&x,1);

loadACQ(&x);

lib();

lib();

storeREL(&x,0);

loadACQ(&x,0)

library library

storeREL(&x,0)

mo

rf,hb (forbidden!)

call lib()
sb

ret lib()
sb

We will collect all ordering of this sort into a new relation: the deny relation, D,

is defined as the set of edges from call to return actions where the addition of a client

happens-before edge from return to call would complete a shape that is forbidden by the

consistency predicate. In the example above, there is a deny edge from the call to the re-

turn: an opposing happens-before edge would violate CoWW. Each rule in the consistency

predicate that restricts happens-before with reference to another relation contributes to

the deny relation. As a consequence library-internal reads-from, modification-order, lock-

order and SC-order edges can all create deny edges.

Deny ordering is weaker than guarantee ordering: the guarantee assures us of the

existence of a happens-before edge, there may not be a client happens-before edge that

opposes a deny, but there may be one coincident with it.

History Having defined the interface actions, guarantee edges and deny edges, we can

now define the history of an execution, that identifies the interface between the client part

of an execution and the library part:

Definition 17. The history of an execution X is a triple H = (Ai, G,D), where Ai is

a set of call and return actions, G is the guarantee relation, D is the deny relation and

G,D ⊆ Ai × Ai.

8.2.2 The most general client

If two library implementations produce the same set of histories, then there is no difference

in how they affect the client, and the client behaviour of their composition will be identical.

If one implementation produces a subset of the histories of the other then its behaviours
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in composition with a client will be a subset of that of the other. From this observation,

we define a sound abstraction relation over histories that we can then lift to the sets of

histories generated by library code.

With this formulation of abstraction, a specification is simply a collection of histories.

Here, our implementation and specification are both programs, and we will enumerate

the histories of each by executing them in an arbitrary client context. This motivates the

definition of the most general client : rather than enumerate the behaviour of the library

in an arbitrary client context, we would like a constrained set of client contexts that are

sufficient to generate all possible histories. The most general client must enumerate all

possible combinations of library calls, on any number of threads, with all possible values

of arguments. The definition of the most general client is:

Definition 18. The most general client is defined as follows: Take n ≥ 1 and let

{m1, . . . ,ml} be the methods implemented by a library L. We let

MGCn(L) = (let L in Cmgc
1 ∥ . . . ∥ Cmgc

n ),

where Cmgc
t is

while(nondet()) { if(nondet()) {m1}else if(nondet()) {m2} . . . else {ml} }

Here, we let the parameters of library methods be chosen arbitrarily.

We are considering a restricted set of programs where all library locations are initialised

with writes that happen before all other memory accesses. We write !L"I for the set of

executions of the library L under the most general client starting from an initial state

I.

To cover the set of all possible consistent executions, we must also enumerate all

possible client happens-before edges: the presence of a client happens-before edge does

not simply restrict the set of consistent executions; it can introduce new ones, by creating

a new visible-side-effect for a non-atomic read, allowing a new value to be read, for

example. We define the extension of an execution X with the relation R as an execution

with identical components whose happens-before relation is transitively extended with R.

Now we can extend the execution of the most general client with an arbitrary set of client

happens-before edges so that we capture all possible behaviours of the library. We write

!L, R"I for the set of consistent executions of L from I extended with R.

In Lemma 22 we establish the following: all library projections of an execution of a

client and a library are contained in the execution of the library under the most gen-

eral client, extended with client happens-before edges. This shows that the MGC can

reproduce the behaviour of the library under any client, and that it is, in fact, most

general.
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8.2.3 The abstraction relation

The history of a library, as identified by the extended most general client, identifies all of

the possible behaviours of a piece of library code in an arbitrary client context. We define

abstraction in terms of these histories.

First note that one history can impose a stronger restriction on its client than an-

other. We have noted that adding or removing happens-before edges can add or remove

behaviours to the execution of the history in a context, but adding deny edges only ever

removes behaviours. As a consequence, a history that contains more deny edges permits

fewer executions in a particular context. We define abstraction over histories in these

terms:

Definition 19. For histories (A1, G1, D1) and (A2, G2, D2), we let (A1, G1, D1) ⊑

(A2, G2, D2) if A1 = A2, G1 = G2 and D2 ⊆ D1.

Now we raise the abstraction relation to a relation over pieces of code using the most

general client. Recall that a piece of code can exhibit a consistent execution with a data

race, and in that case the whole program has undefined behaviour. We would like to

show the soundness of the abstraction relation, and this will not hold in the presence

of undefined behaviour. We define a library and set of initial states, (L, I), as safe if it

does not access locations internal to the client, and it does not have any executions under

the most general client with faults like data races. We can now raise the definition of

abstraction to the level of library code:

Definition 20. For safe (L1, I1) and (L2, I2), (L1, I1) is abstracted by (L2, I2), writ-

ten (L1, I1) ⊑ (L2, I2), if for any relation R containing only edges from return actions to

call actions, we have

∀I1 ∈ I1, H1 ∈ history(!L1, R"I1). ∃I2 ∈ I2, H2 ∈ history(!L2, R"I2). H1 ⊑ H2.

The formulation of the abstraction relation is quantified over all possible happens-

before extensions to the most general-client. This enumeration makes part of the history

redundant. Deny edges that result from library-internal modification order, lock order

and reads-from edges no longer need to be tracked. This is because, in safe programs, the

enumeration over happens-before extensions will remove histories where client happens-

before edges together with internal mo, lo or rf edges violate the consistency predicate.

The only relation that the deny needs to track is SC order, which spans both client and

library parts of the execution and must be acyclic.

8.2.4 The abstraction theorem

Suppose we have a library specification that abstracts a library implementation according

to the definition above, then we would like to know that the behaviour of that implemen-
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tation in an arbitrary client context is a subset of the behaviour of the specification in the

same context. This is the guarantee that the abstraction theorem provides, with some

caveats.

In order to apply the theorem, we need to establish some properties of the library

and the client. We need to know that there are no program faults that lead to undefined

behaviour in either, but more problematically, we need to know that the library and the

client only communicate through calls and returns to library functions, and that they do

not write to each others internal memory locations. Collectively, we call these properties

safety . Ideally, we would establish safety of the library in an arbitrary client context, and

prove that this implies safety of any implementation that the specification abstracts, but

this is not the case.

Consider the following specification, L2, and implementation, L1, of a library that

contains a single method m. Internally, the library uses a location, x, that it never accesses

in the specification, but is written to and read from in the implementation.

L1: atomic int x;

int m() {

storeRLX(&x,42);

return loadRLX(&x);

}

L2: atomic int x;

int m() {

return 42;

}

For client contexts that do not access x, the specification and implementation behave

in precisely the same way, and we have L1 ⊑ L2. An unsafe client can of course distinguish

between the two. Take for example the following:

print m(); ∥ storeRLX(&x,0);

Any library will behave in unexpected ways if its client context corrupts its internal

data structures, so we restrict our abstraction theorem to clients that do not do this.

The program above violates this restriction when composed with the specification of the

library: it accesses x. Now consider the following program, where the location y is initially

non-zero:

a=m()

if (a==0)

storeRLX(&y,0)

b=loadRLX(&y)

if (b==0)

storeRLX(&x,0)

storeRLX(& ,42)

loadRLX(& ,0)
sb

storeRLX(& ,0)

rf

call m()

sb
sb

storeRLX(&y,0)

loadRLX(&y,0)

sb

rfret m(0)
sb

Every execution of this program, when composed with the library specification is safe:

the client never executes a write to x. That is because the library always returns the

value 42, so the conditional in the left-hand thread always fails, there is never a write
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to y, the conditional in the right-hand thread is never satisfied, and the write it guards

never executes.

Now consider the execution of the client composed with the implementation drawn on

the right above. This execution features load-buffering style relaxed behaviour where each

load reads from a future write on the other thread. In this execution, the library-internal

load of x reads from the client’s write of x, violating safety. This example shows that

for a given client, we cannot establish safety of the implementation as a consequence of

safety of the specification.

It is easy to recognise the client as a potentially unsafe one in the example above

because syntactically it contains an access of the library-internal variable x. The same

sort of behaviour can be observed with a client that acts on an address that is decided

dynamically, so that the potential safety violation would not be so easily identified.

In the formulation of the abstraction theorem, this example forces us to require safety

of the client composed with the specification as well as non-interference of the client

composed with the implementation:

Theorem 21 (Abstraction). Assume that (L1, I1), (L2, I2), (C(L2), I 5 I2) are safe,

(C(L1), I5I1) is non-interfering and (L1, I1) ⊑ (L2, I2). Then (C(L1), I5I1) is safe and

client(!C(L1)"(I 5 I1)) ⊆ client(!C(L2)"(I 5 I2)).

The unfortunate requirement for non-interference of the implementation in the ab-

straction theorem is an important limitation of the C/C++11 memory model design. It

means that we cannot alleviate the complexity of the relaxed memory model by encap-

sulating part of the program in a library and then providing a simple specification. The

programmer will always have to establish that their program is non-interfering according

to the C/C++11 memory model with the library implementation.

The problematic example was a consequence of the presence of self-satisfying condi-

tional executions: we placed a safety violation in the guarded block on each thread so that

the violations only occurred when self satisfying behaviour was witnessed. If the memory

model forbade self satisfying conditionals (this is difficult to ensure, see Chapter 5 for

details), then the client presented above would be safe. Moreover, we would not need to

check that (C(L1), I 5 I1) is non-interfering because, after restricting dependency cycles,

any incidence of interference that remained allowed would be a safety violation of either

(L1, I1) or (C(L2), I 5 I2). This new restriction in the model would make the language

compositional.

8.3 Abstraction in the Treiber stack

This section presents an overview of the proof of safety, non-interference and abstraction

for the specification and implementation of the Treiber stack. The full proof can be found

in the paper [25]. The proof relies on a derived total order, <, over all of the calls to
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push and pop in an execution. The order can be constructed over executions that use the

specification or the implementation of the stack.

In constructing the order, note that there are three outcomes for the calls to pop and

two to push: a pop can fail and return empty and both can succeed or block. We start

building up < by recognising that successful calls feature a read-modify-write action on

T . For two calls to the library, I1 and I2, I1 < I2 if for the rmw events a1 ∈ I1 and a2 ∈ I2,

a1
mo
−→ a2. Failing calls of pop acquire-load from a rmw action. We place the pop call into

< immediately following the call that gave rise to the rmw action. We include blocking

calls anywhere in <.

Now we use the total order < to prove safety, non-interference and abstraction by

induction.

Safety and non-interference First we establish that any read from T in an implemen-

tation pop happens after every <-preceding write to T in push. Note that all push calls

contain a release read-modify-write, and all pop calls contain an acquire load. Because

all writes are read-modify-writes, each push heads a release sequence that contains all

<-following writes of T , and the pop synchronises with all prior push calls.

Now we show safety of the implementation by considering each of the possible sources

of undefined behaviour: unsequenced races, bad mutex use, indeterminate reads, interfer-

ence and data races. The first three are trivial: there are no unsequenced actions or locks,

and we initialise all locations before any calls to the library. We show non-interference

by inducting on <: at each step, a call only reads or writes library-local locations. The

only non-atomic accesses are of the next and val fields of nodes. First note that nodes

are not reused, so we need only consider write-read races. Writes of either location are

followed by a release write to T , and reads of either are preceded by an acquire read of

T . We know from the argument above that these actions generate synchronisation that

means there is no race.

Safety and non-interference of the specification follow a similar argument, although

race-freedom is now straightforward because there are no non-atomic accesses.

Abstraction Proving that the specification abstracts the library amounts to witnessing

the history of an arbitrary execution of the implementation in the client combined with

the specification. To do this, we take an arbitrary execution of the implementation,

Ximp ∈ !L1, R"I1, under an arbitrary happens-before extension R, construct an execution

of the specification with the same history, and then show that this new execution is

consistent.

First project out the pre-execution portion of the candidate execution Ximp, and call

it Cimp. Now replace successful push and pop calls in Cimp with the actions corresponding

to successful specification calls of push and pop with the same values at interface actions,

and do the same for failed pops and blocked calls. We use the < relation to construct the
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values returned by the specifications internal function calls over the sequence S: following

<, we build up the internal state of the sequence at each call starting with an empty

sequence, and we set the return values of the append, head and tail calls to match. This

gives a new pre-execution Cspec. It is straightforward that Cspec ∈ ⟨L2⟩I2.

Now we construct an execution witness for Cspec, by setting reads-from and modifi-

cation order to match <. These two components together with the calculated relations

produce the candidate execution Xspec. We will now show that Xspec is a consistent

execution.

First we induct along < to establish that the accesses of next and val in the im-

plementation correspond to the values appended and returned from head and tail in the

specification. This follows from the structure of the induction, the fact that success-

ful push and pop calls execute read-modify-writes, and the fact that modification order

contributes to <.

Most of the conjuncts of the consistency predicate are trivially satisfied, or follow

from the push to pop release-sequence synchronisation. The rules for atomic sections are

satisfied by the fact that each location is written only once in the atomic block, and both

modification order and reads-from match the total order <.

History Inclusion It remains to show that the implementation history is abstracted

by the specification history:

history(Ximp) ⊑ history(Xspec)

There are no SC accesses in either the library or the implementation, so we need not

consider the deny portion of the history. To show that the guarantee portion of the history

is the same, note that we do not need to consider blocking calls, because they never return

and do not add to the guarantee. For successful calls, the same release-sequence reasoning

that identifies the implementation synchronisation applies to the specification calls. Failed

pop calls that read the initialisation do not create synchronisation in the implementation

or the specification. Calls that read from a push do synchronise with <-earlier push calls,

but the specification also synchronises in this case.

This completes the proof that the Treiber stack specification abstracts the implemen-

tation.

8.4 Soundness of the abstraction relation

The proof of soundness relies on two lemmas: one that allow us to decompose programs

into client and library parts, and another that allows us to compose compatible libraries

and clients. In decomposition, we abstract the effect of the other component into a history,

and show that the behaviour of the whole, projected to the chosen component matches the
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execution of the component extended with a history. In composition, we show that two

components extended with compatible histories can be composed into a whole program

whose component projections match the original history-extended executions. We use

these two lemmas to show that Theorem 21 holds.

8.4.1 Necessary definitions

The following propositions use several new definitions, introduced here. First we define

interf(X), a function that projects the interface actions. Then we define functions that

identify the guarantee and deny of a library in an execution: hbL(X) is the projection

of happens-before created by the library from call to return actions, and hbC(X) is the

client equivalent of hbL(X), the projection of client happens-before from return to call

actions.

We simplify the deny relation, removing edges that would be made inconsistent by

modification order or reads-from. We can do this because non-interference implies that

these edges only relate actions of the same component, and our calculation of the history

enumerates all possible extensions of happens-before. Therefore, any choice of extension

that makes an execution inconsistent must also make a the corresponding execution in-

consistent in any component history that abstracts it. The SC relation, on the other

hand, relates actions from both components, and the composite SC order must agree

with happens before. The remaining deny edges are captured by scL(X), the projection

of ((hb(X) ∪ sc(X))+)−1 to return to call actions. There is again a client equivalent of

scL(X), scC(X), the projection of ((hb(X) ∪ sc(X))+)−1 to call and return actions.

We define projection functions lib(X) and client(X) that project out from execution X

all actions (and the relations over them) in the interface together with those from either

the library or the client respectively. For an extended execution X, core(X) is the same

execution with happens-before recalculated without the extension.

8.4.2 Decomposition and composition

Now the decomposition and composition lemmas are stated along with sketches of their

proofs (see the paper for the full proofs [25]).

Lemma 22 (Decomposition). For any X ∈ !C(L1)"(I 5 I1) satisfying Noninterf,

client(X) ∈ !C, hbL(core(lib(X)))"I; (8.1)

lib(X) ∈ !L1, hbC(core(client(X)))"I1. (8.2)

Furthermore,

• client(X) and lib(X) satisfy Noninterf;

• if X is unsafe, then so is either client(X) or lib(X); and
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• scC(client(X)) ∪ scL(lib(X)) is acyclic.

Proof Sketch It is straightforward that client(X) and lib(X) satisfy Noninterf. Fur-

thermore, any cycle in scC(client(X)) ∪ scL(lib(X)) is also a cycle the original execution,

and this contradicts the consistency of SC.

To check 8.1 (8.2 is similar), we need to show that the client projection of the happens-

before edges in X match the happens-before relation created by the most general-client

execution of the client extended by the library core guarantee. Note that the MGC

happens-before is certainly a subset, so it remains to show that any happens-before edge

in client(X) is also an edge in an execution of the most general client. Consider an

arbitrary edge between actions u and v. The happens-before edge is made up of a path

in sb and sw. All interface actions on the same thread are related by sequenced before,

so we can pick out all interface actions in this path. Synchronisation is only ever created

between actions at the same location, so non-interference implies that there is never a

synchronises-with edge between the two components. Together that implies that any

segment of library actions in the path of edges from u to v starts with a call action and

ends with a return action, and is covered by the history, as required.

It is clear that the most general client will generate pre-executions that cover the

projections in each case above. Any subset of the actions of an execution together with

the relations restricted to that set will satisfy most of the conjuncts of the consistency

predicate, with those conjuncts that deal with locks, and read values implied by non-

interference.

Because X satisfies non-interference, any safety violation must either be a data race,

an indeterminate read or an instance of bad mutex use. In the racy case, again because

of non-interference, both racy actions must be in the same component, as required, The

mutex case is similar. Indeterminate reads are a single action fault, so they reside in one

component or the other.

Lemma 23 (Composition). Consider

X ∈ !C, hbL(core(Y ))"I;

Y ∈ !L2, hbC(core(X))"I2,

such that

• A(X) ∩ A(Y ) = interf(X) = interf(Y ) and otherwise action and atomic section identi-

fiers in A(X) and A(Y ) are different;

• interf(sb(X)) = interf(sb(Y ));

• scC(X) ∪ scL(Y ) is acyclic; and

• X and Y satisfy Noninterf.
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Then for some Z ∈ !C(L2)"(I 5 I2) we have X = client(Z) and Y = lib(Z). Furthermore,

if X is unsafe, then so is Z.

Proof Sketch We construct a Z that satisfies the conditions. Let the actions and

modification order of Z be the union of those of X and Y , let the sequenced before relation

be the transitive closure of the union of the sequenced-before relations of X and Y , and

let asw extend from all initialisation actions of either to the first action on every thread.

From the assumptions, we have that the interface actions and sequenced before relations

match over the interface actions, the pre-execution of Z is well-formed, sequenced-before

is consistent and the modification order is consistent. Let the reads-from map of Z be

the union of the reads-from maps of X and Y extended with edges that correspond to

the passing of parameters in call actions and the return of values in return actions.

In order to construct the SC order of Z, we show that the union of the SC relations

of X and Y , together with the happens-before relation of Z is acyclic. Assume there is

a cycle and (appealing to the argument made in Lemma 22) note that the cycle must

be made up of alternating paths of edges in the sequenced-before, synchronises-with and

SC relations of either component. The cycle must contain at least one pair of interface

actions: otherwise, the path is contained in one component, and violates consistency under

the MGC. Then each segment between interface actions corresponds to an (scC(X))−1 or

(scL(Y ))−1 edge, contradicting the assumptions of the lemma. We arbitrarily linearise the

projection to SC actions of the union of the SC relations of X and Y together with the

happens-before relation of Z to get the SC order of Z.

We have that client(Z) = X and lib(Z) = Y by construction. We have shown several

conjuncts of the consistency predicate hold over Z, and the remaining ones follow from

the construction of Z and non-interference of X and Y .

X satisfies non-interference, so any safety violation must either be a data race, an

indeterminate read or an instance of bad mutex use. Any fault of this sort is also a fault

of Z because of non-interference, and because client(Z) = X and lib(Z) = Y .

8.4.3 Proof of soundness of the abstraction relation: Theorem 21

Consider X ∈ !C(L1)"(I 5 I1) for I ∈ I and I1 ∈ I1. Since X satisfies Noninterf,

we can apply Lemma 22, decomposing X into a client execution client(X) and a library

execution lib(X):

client(X) ∈ !C, hbL(core(lib(X)))"I;

lib(X) ∈ !L1, hbC(core(client(X)))"I1.

Let R be the projection of hbC(core(client(X))) to return and call actions. Then

noting that synchronisation is inter-thread and actions from library calls on the same

thread are totally ordered by sequenced before, we have that hbC(core(client(X))) \R is a
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subset of the sequenced-before relations of either interf(client(X)) or interf(lib(X)). Thus,

from (8.2), we have lib(X) ∈ !L1, R"I1.

Recall that (L1, I1) ⊑ (L2, I2). We appeal to Definition 20, with the happens-

before extension hbC(core(client(X))) to establish that there exist I2 ∈ I2 and Y ∈

!L2, hbC(core(client(X)))"I2 such that history(lib(X)) ⊑ history(Y ).

Then from (8.1), the safety conditions and by Lemma 23 we get that for some Z ∈

!C(L2)"(I 5 I2) we have client(Z) = client(X). Furthermore, if X is unsafe, then so is

client(X), and by Lemma 23, so is Z. Thus the safety of C(L2) implies that of C(L1).
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Chapter 9

Conclusion

From the IBM 370/158MP of 1972, to the computers and mobile phones of today, relaxed

shared-memory concurrency is well established as a common design element. A typical

machine now includes a multi-core processor with a relaxed interface to memory, together

with a GPU that exhibits massive parallelism, and a hierarchy of memory-address spaces.

Over time, advances in mainstream hardware and compilers have continuously outstripped

our theoretical understanding of computers.

Typically, the systems software of these machines is programmed with some flavour

of the C language. One of the key bottlenecks on these systems is memory, where there

is a tradeoff between performance and programmer intuition. Expert programmers, like

McKenney [79] and Michael [81], write elaborate algorithms that rely on delicate ordering

properties in order to avoid a performance penalty on concurrent memory accesses. These

algorithms are at the core of operating systems.

Reasoning about concurrent code written for these systems is difficult for several rea-

sons. These machines exhibit unintuitive, unexpected, and sometimes undocumented

behaviour. The specifications of machines and programming languages tend to be poor:

these documents are universally written in English prose and are therefore untestable,

open to interpretation, and often contain errors and omissions. Moreover, it is not clear

what the specification of concurrent algorithms should be: there is not an accepted spec-

ification language for relaxed-concurrent algorithms.

Without continued effort, this unhappy situation is sure to get worse: hardware is

slated to become more parallel, and memory systems more complex. My goal is to formally

understand and improve the programming model of current and future systems in the

context of both the underlying hardware, and concurrent programming idioms. At the core

of my approach is mechanised formal specification. Formal specifications are unambiguous

and can be scrutinised precisely. Mechanised specifications can be executed: one can

use them to build tools that test the specification. Mechanised formal specifications

also enable one to prove properties of the specification within a theorem prover, adding

confidence to results that speak about unwieldy mathematical objects. With these tools,

231
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it is possible to identify errant details of a specification and to propose improvements.

In this thesis, I took a mainstream relaxed memory model and subjected it to a

comprehensive technical analysis of the sort described above. The work led to changes

in the C and C++ language definitions, and my observations will inform the design of

future memory models.

Chapter 3 described a mechanised formal model of C/C++11 concurrency that closely

follows the published prose specification. Chapter 4 described Cppmem, a tool for ex-

haustively executing very small programs according to the memory model. Cppmem is

used both in teaching, and in industry for understanding the memory model. Chapter 5

described problems found with the standard during the process of formalisation, together

with solutions that were adopted by the C and C++ standardisation committees as part

of the language. This chapter included an in-depth criticism of the memory-model’s

treatment of thin-air values, an open problem in memory-model design. Chapter 6 de-

scribed a mechanised proof that shows the equivalence of progressively simpler versions

of the C/C++11 memory model, under successively tighter requirements on programs,

culminating in the proof for programs without loops or recursion of one of C++11’s

stated design goals: race-free programs that use only regular memory accesses, locks and

seq cst-annotated atomic accesses behave in a sequentially consistent manner. Chapter 7

presented proofs that the compilation mappings for x86 and Power are sound, establish-

ing that the language is efficiently implementable over those architectures. Chapter 8

described a compositional reasoning principle for C/C++11, and its application to a

Treiber stack. Appendix A and B presented a side-by-side comparison of the C++11

standard text [30] and the formal memory model, establishing their correspondence. Fi-

nally, Appendix C presented the formal definition of the memory model, automatically

typeset by Lem.

This work showcases the power and the practicality of formal semantics for real-world

systems, and is in stark contrast to the typical process of solely-prose specification. The

formal model created an unambiguous artefact that could be judged without the lens of

interpretation, and Cppmem enabled those without expertise in the formal model to test

their expectations of it. The timing of the work, and the uninhibited communication

with the standardisation committee meant that some of the errors and omissions of the

prose specification were rectified before its ratification. Formalisation of the memory

model raised the possibility of establishing desirable properties, like implementability and

algorithm correctness, with mathematical proof. The clarity of the formal model enabled

lucid analysis of its flaws, in particular its treatment of thin-air values.

Formal model validation In prior work formalising the memory models of hardware

and languages, there have been existing processors or compilers that implement the spec-

ification (e.g. x86, Power, ARM and Java). A key part of the validation of such a model

is extensive testing against existing implementations: it ensures that the memory model
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captures all of the behaviour allowed by existing implementations, and is evidence that

the model is sound.

The design of the C/C++11 memory model predated implementations (although the

design was influenced by the libatomic ops concurrency library written by Boehm

et al. [33]). This means that the sorts of validation of the memory model one can perform

are different. In the case of C/C++11, this form of validation was not possible at the

start. Instead, one must validate that the model is implementable above hardware, and

that it is usable by the variety of programmers that it targets. This thesis provides several

forms of validation of the memory model.

First, small test programs can be executed according to the mechanised formal model

with Cppmem. The standardisation committee used Cppmem to test that the model

behaved as they expected, and a design goal set out by the standardisation committee

was established (for a limited set of programs) with mathematical proof. Together with

the close correspondence of the standard argued in Appendix A, and the adjustments

to the standard detailed in Chapter 5, these facts are evidence that the formal model

matches the intention of the standardisation committee.

Second, the soundness proofs of the compilation mappings of Chapter 7 imply that

the language is implementable over common processor architectures.

Finally, the reasoning principle described in Chapter 8 shows that it is possible to

reason compositionally (with some limitations) about programs written in C++11.

In related work, Morisset et al. used the formal memory model to test the soundness

of optimisations, finding mistakes in GCC [84].

These forms of validation are compelling, but not complete. One of the key omissions is

the testing and analysis of real-world code. It is not yet clear that the programming idioms

that C/C++11 supports match the patterns that programmers of large-scale systems will

want to use.

9.1 Future work

There are many avenues for further work presented below.

Push concrete changes from Defect Report 407 to a technical corrigendum

Defect report 407 [21] notes that several rules concerning SC fences are absent from the

standard, and should be included, and suggests a concrete textual amendment. This

suggestion should be incorporated in a technical corrigendum, and in future revisions of

the language.

A stronger C/C++11 memory model The models presented in Chapter 3 have

been shown to be implementable above hardware, but in many ways, they are weaker

than they need to be.
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The release-sequence of C/C++11 is quite subtle: it is a subsequence of modification

order, one of the dynamic inter-thread relations over memory accesses. There are stronger

formulations based on sequenced-before (described in Chapter 5) that would be sound over

hardware with the existing compiler mappings.

SC fences correspond to strong memory fences on the underlying hardware. Most

target hardware (X86, Power, ARM) allows one to restore SC by adding enough strong

fences, but one cannot do the same with SC fences, according to the language memory

model. This weakness appears to be an artefact of misunderstanding, and it seems that

SC fences could be strengthened.

Solve the thin-air problem Chapter 5 described the thin-air problem: our current

relaxed memory models do not handle the interplay between source dependencies and com-

piler optimisations correctly. As a consequence, the language admits thin-air behaviour

that it should not. The specification should be strengthened to forbid this, but there is

not a straightforward way to do this within the current specification style. We need new

forms of specification that take into account dependencies, and treat them appropriately.

Minimal hardware model for C/C++11 The C/C++11 memory model is very dif-

ferent to a hardware model in that it provides racy programs with undefined behaviour.

The style of specification differs too: the language defines relations that have an intu-

itive connotation like sequenced-before, and happens-before. In simple programs, naive

intuitions about program behaviour hold, and it is only when programs use expert fea-

tures that the model becomes more complicated. Hardware memory models are described

quite differently. One could define a hardware model that is only just strong enough to

implement the C/C++11 features. This would indicate where existing hardware might

be relaxed, and further optimisations could be made.

System-scale relaxed-memory testing The tool presented in this thesis can only

run minute litmus tests, and is no use for testing real systems code. Future work should

enable scalable testing against the relaxed-memory language specification. Such a testing

infrastructure could exercise heuristics that provide the most perverse executions possible,

or executions that current hardware does not exhibit, but future hardware may.

Complete formal specifications The formal memory model presented here is only a

part of the language specification. In future work, this will be combined with formali-

sations of other parts of the language specification in order to build up a complete C or

C++ formal language model.

Mechanised formal model as specification With a complete mechanised formal

model of a programming language, why should the prose specification be authoritative?
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There are several barriers preventing mechanised formal specification of mainstream lan-

guages. The designers of a language like C are experts in the C language and not in formal

specification, so understanding the mathematical representation of the formal model from

a direct reading would be a daunting task, and, at first, would provide less confident un-

derstanding than the prose specification. There would be a loss of control for the language

designers, who would have to describe their wishes to the formal specifiers. A diverse set

of users of the language need to understand parts of the specification, and some of those

require a prose description of the specification, so a formal model alone will not suffice.

There are ways to overcome these issues. One could engage in an iterative process,

where the language designers produce a written specification, the formalisers interpret

that as a mechanised formal model, and then provide testing results to tease out corner

cases that need further discussion. This process would produce a prose description of the

language and a mechanised formal model that match one another. This is the process

that emerged informally from my contact with working groups 21 and 14, but it could be

improved by starting the collaboration earlier, so that unworkable concepts in the language

design (like the C/C++11 thin-air restriction) could be understood before committing to

related elements of the design.

With the mechanised formal model, the draft design could be tested, both to expose

corner cases, as mentioned above, but also to validate the usability of supported program-

ming idioms. This could be achieved by compiling a body of tests, perhaps automatically,

that probe the intricate details of the language. These tests, combined with a tool for

exploring the behaviour of the model and capturing new tests, would provide the inter-

face between designers and formalisers. At the end of this process, the mechanised model

could be made the authoritative specification, and conformance testing tools could be

built directly from the model.

GPGPU memory models The GPU is becoming more important as a computational

tool in modern computers; in many systems, the GPU is afforded more resources than

the CPU in terms of die area, part cost or power consumption. There has been an

effort to enable programmers to write general purpose code above graphics processing

hardware, which is tuned for memory throughput, rather than low latency. Until recently,

programmers of such systems had been required to avoid writing racy code, but the

OpenCL 2.0 specification has introduced atomic accesses similar to those of C11 that

expose relaxed memory effects to the programmer. Typical GPUs have several address

spaces, each of which identify memory in an increasingly local part of a memory hierarchy.

This additional complexity is layered above the existing complexity of the C/C++11

memory model. There are a variety of GPU vendors, each with a different quickly-evolving

architecture. Understanding GPU programming is an area for future work.

Future systems: unified address spaces, non-uniform memory hierarchies

There are many directions for future hardware designs that would impact the program-
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mer’s memory model. The CPU and GPU may gain a shared address space, at which

point, racy access to this memory will have to be carefully specified, and the explicit

memory hierarchy of the GPU will be able to interact with the implicit cache hierarchy

of the CPU. Language programming models will have to adapt to these changes.

Relaxed specification languages Few concurrent algorithms or OS calls are formally

specified in a manner that describes their relaxed behaviour, but internally, mainstream

systems do admit relaxed behaviour. We lack a specification language for describing

high-level relaxed memory code. Chapter 8 demonstrated that, for performance, relaxed-

memory effects cannot be hidden behind sequential interfaces. This specification language

should be human and machine readable and could be included in header files. Specifi-

cations could be validated with some combination of proof and testing, both against the

language specification.

Systematic programmer-idiom search Current language designs are informed by

the programming idioms that the designers intend to support. In practice, programmers

may use a different set of idioms. If they use unsupported idioms, the language might not

provide the guarantees necessary to ensure correct behaviour, even if testing on current

systems reveals the code acts as intended. If no programmer uses a particular idiom that is

provided for in the specification, then the potential for optimisation is needlessly curtailed

in the compiler and hardware. Future language designs should be informed by systematic

analysis of which language guarantees programmers rely on in practice. The language

should provide at least this set of guarantees, perhaps with well-motivated additions.
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Appendix C

Lem models

This appendix reproduces the formal definitions that make up the memory models of

Chapter 3 and the theorems of Chapter 6. These definitions are automatically typeset

from the Lem definitions.

C.1 Auxiliary definitions

let inj on f A = (∀ x ∈ A. (∀ y ∈ A. (f x = f y) −→ (x = y)))

let strict total order over s ord =

relation over s ord ∧ isTotalOrderOn ord s

let adjacent less than ord s x y =

(x , y) ∈ ord ∧ ¬ (∃ z ∈ s . (x , z ) ∈ ord ∧ (z , y) ∈ ord)

let adjacent less than such that pred ord s x y =

pred x ∧ (x , y) ∈ ord ∧ ¬ (∃ z ∈ s . pred z ∧ (x , z ) ∈ ord ∧ (z , y) ∈ ord)

val finite prefixes : ∀ α. SetType α, Eq α ⇒ set (α ∗ α) → set α → bool

let finite prefixes r s =

∀ b ∈ s . finite { a | ∀ a | (a, b) ∈ r}

val minimal elements : ∀ α. set α → set (α ∗ α) → set α

let minimal elements s r = s

C.2 Types

The base types are defined for each backend. The base types for the HOL backend are

reproduced here.

type aid impl = string

357
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type program impl = nat

type tid impl = Tid hol of nat

type location impl = Loc hol of nat

type cvalue impl = Cvalue hol of nat

type aid = aid impl

type program = program impl

type tid = tid impl

type location = location impl

type cvalue = cvalue impl

type memory order =

| NA

| Seq cst

| Relaxed

| Release

| Acquire

| Consume

| Acq rel

type lock outcome =

Locked

| Blocked

type action =

| Lock of aid ∗ tid ∗ location ∗ lock outcome

| Unlock of aid ∗ tid ∗ location

| Load of aid ∗ tid ∗ memory order ∗ location ∗ cvalue

| Store of aid ∗ tid ∗ memory order ∗ location ∗ cvalue

| RMW of aid ∗ tid ∗ memory order ∗ location ∗ cvalue ∗ cvalue

| Fence of aid ∗ tid ∗ memory order

| Blocked rmw of aid ∗ tid ∗ location

type location kind =

Mutex

| Non Atomic

| Atomic

type pre execution =

⟨| actions : set (action);

threads : set (tid);
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lk : location → location kind;

sb : set (action ∗ action) ;

asw : set (action ∗ action) ;

dd : set (action ∗ action) ;

|⟩

type order kind =

Global order

| Per location order

type relation usage flags =

⟨| rf flag : bool;

mo flag : bool;

sc flag : bool;

lo flag : bool;

tot flag : bool; |⟩

type execution witness =

⟨| rf : set (action ∗ action);

mo : set (action ∗ action);

sc : set (action ∗ action);

lo : set (action ∗ action);

tot : set (action ∗ action);

|⟩

type relation list = list (string ∗ set (action ∗ action))

type candidate execution = (pre execution ∗ execution witness ∗

relation list)

type observable execution = (pre execution ∗ execution witness)

type program behaviours =

Defined of set (observable execution)

| Undefined

type rf observable execution = (pre execution ∗ set (action ∗ action))

type rf program behaviours =

rf Defined of set (rf observable execution)

| rf Undefined

type named predicate tree =

Leaf of (candidate execution → bool)

| Node of list (string ∗ named predicate tree)

val named predicate tree measure : ∀. named predicate tree → nat
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let named predicate tree measure t =

match t with

| Leaf → 0

| Node l → 1 + length l

end

let rec apply tree pred tree X =

match pred tree with

| Leaf p → p X

| Node l → List.all (fun (name, branch) → apply tree branch X ) l

end

type fault setgen =

One of (string ∗ (candidate execution → set (action)))

| Two of (string ∗ (candidate execution → set (action ∗ action)))

let is fault faults list (Xo, Xw , rl) a =

let is particular fault f =

match f with

| One ( name, setgen) → (a ∈ (setgen (Xo, Xw , rl)))

| Two ( name, setgen) →

∃ b ∈ Xo.actions .

((a, b) ∈ (setgen (Xo, Xw , rl))) ∨ ((b, a) ∈ (setgen (Xo, Xw , rl))) end in

List.any is particular fault faults list

let each empty faults list X =

let faults empty f =

match f with

| One ( name, setgen) → null (setgen X )

| Two ( name, setgen) → null (setgen X ) end in

List.all faults empty faults list

type opsem t = program → pre execution → bool

type condition t = set candidate execution → bool

let true condition = true

val statically satisfied : ∀. condition t → opsem t → program → bool

let statically satisfied condition opsem (p : program) =

let Xs = {(Xo, Xw , rl) | opsem p Xo} in

condition Xs

type memory model =

⟨| consistent : named predicate tree;
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relation calculation : pre execution → execution witness →

relation list;

undefined : list (fault setgen);

relation flags : relation usage flags;

|⟩

val observable filter : ∀. set (candidate execution) →

set (observable execution)

let observable filter X = {(Xo, Xw) | ∃ rl . (Xo, Xw , rl) ∈ X }

val behaviour : ∀. memory model → condition t → opsem t → program →

program behaviours

let behaviour M condition opsem (p : program) =

let consistent executions =

{ (Xo, Xw , rl) |

opsem p Xo ∧

apply tree M .consistent (Xo, Xw , rl) ∧

rl = M .relation calculation Xo Xw } in

if condition consistent executions ∧

∀ X ∈ consistent executions .

each empty M .undefined X

then Defined (observable filter consistent executions)

else Undefined

val rf observable filter : ∀. set (candidate execution) →

set (rf observable execution)

let rf observable filter X = {(Xo, Xw .rf ) | ∃ rl . (Xo, Xw , rl) ∈ X }

val rf behaviour : ∀. memory model → condition t → opsem t →

program → rf program behaviours

let rf behaviour M condition opsem (p : program) =

let consistent executions =

{ (Xo, Xw , rl) |

opsem p Xo ∧

apply tree M .consistent (Xo, Xw , rl) ∧

rl = M .relation calculation Xo Xw } in

if condition consistent executions ∧

∀ X ∈ consistent executions .

each empty M .undefined X

then rf Defined (rf observable filter consistent executions)

else rf Undefined
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C.3 Projection functions

let aid of a =

match a with

| Lock aid → aid

| Unlock aid → aid

| Load aid → aid

| Store aid → aid

| RMW aid → aid

| Fence aid → aid

| Blocked rmw aid → aid

end

let tid of a =

match a with

| Lock tid → tid

| Unlock tid → tid

| Load tid → tid

| Store tid → tid

| RMW tid → tid

| Fence tid → tid

| Blocked rmw tid → tid

end

let loc of a =

match a with

| Lock l → Just l

| Unlock l → Just l

| Load l → Just l

| Store l → Just l

| RMW l → Just l

| Fence → Nothing

| Blocked rmw l → Just l

end

let value read by a =

match a with

| Load v → Just v

| RMW v → Just v

| → Nothing

end

let value written by a =
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match a with

| Store v → Just v

| RMW v → Just v

| → Nothing

end

let is lock a =

match a with

| Lock → true

| → false

end

let is successful lock a =

match a with

| Lock Locked → true

| → false

end

let is blocked lock a =

match a with

| Lock Blocked → true

| → false

end

let is unlock a =

match a with

| Unlock → true

| → false

end

let is atomic load a =

match a with

| Load mo → mo ̸= NA

| → false

end

let is atomic store a =

match a with

| Store mo → mo ̸= NA

| → false

end

let is RMW a =

match a with
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| RMW → true

| → false

end

let is blocked rmw a =

match a with

| Blocked rmw → true

| → false

end

let is NA load a =

match a with

| Load mo → mo = NA

| → false

end

let is NA store a =

match a with

| Store mo → mo = NA

| → false

end

let is load a =

match a with

| Load → true

| → false

end

let is store a =

match a with

| Store → true

| → false

end

let is fence a =

match a with

| Fence → true

| → false

end

let is atomic action a =

match a with

| Load mo → mo ̸= NA

| Store mo → mo ̸= NA
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| RMW → true

| Blocked rmw → true

| → false

end

let is read a =

match a with

| Load → true

| RMW → true

| → false

end

let is write a =

match a with

| Store → true

| RMW → true

| → false

end

let is acquire a =

match a with

| Load mo → mo ∈ {Acquire, Seq cst}

| RMW mo → mo ∈ {Acquire, Acq rel, Seq cst}

| Fence mo → mo ∈ {Acquire, Consume, Acq rel, Seq cst}

| → false

end

let is release a =

match a with

| Store mo → mo ∈ {Release, Seq cst}

| RMW mo → mo ∈ {Release, Acq rel, Seq cst}

| Fence mo → mo ∈ {Release, Acq rel, Seq cst}

| → false

end

let is consume a =

match a with

| Load mo → mo = Consume

| → false

end

let is seq cst a =

match a with

| Load mo → mo = Seq cst
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| Store mo → mo = Seq cst

| RMW mo → mo = Seq cst

| Fence mo → mo = Seq cst

| → false

end

C.4 Well-formed threads

let threadwise s rel = ∀ (a, b) ∈ rel . tid of a = tid of b

let interthread s rel = ∀ (a, b) ∈ rel . tid of a ̸= tid of b

let locationwise s rel = ∀ (a, b) ∈ rel . loc of a = loc of b

let per location total s rel =

∀ a ∈ s b ∈ s . loc of a = loc of b −→

(a, b) ∈ rel ∨ (b, a) ∈ rel ∨ (a = b)

let actions respect location kinds actions lk =

∀ a ∈ actions . match a with

| Lock l → lk l = Mutex

| Unlock l → lk l = Mutex

| Load mo l →

(mo = NA ∧ lk l = Non Atomic) ∨ (mo ̸= NA ∧ lk l = Atomic)

| Store mo l →

(mo = NA ∧ lk l = Non Atomic) ∨ lk l = Atomic

| RMW l → lk l = Atomic

| Fence → true

| Blocked rmw l → lk l = Atomic

end

let is at mutex location lk a =

match loc of a with

| Just l → (lk l = Mutex)

| Nothing → false

end

let is at non atomic location lk a =

match loc of a with

| Just l → (lk l = Non Atomic)

| Nothing → false

end

let is at atomic location lk a =
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match loc of a with

| Just l → (lk l = Atomic)

| Nothing → false

end

let locations of actions =

{ l | ∀ Just l ∈ { (loc of a) | ∀ a ∈ actions | true } | true}

let well formed action a =

match a with

| Load mo → mo ∈ {NA, Relaxed, Acquire, Seq cst, Consume}

| Store mo → mo ∈ {NA, Relaxed, Release, Seq cst}

| RMW mo → mo ∈ {Relaxed, Release, Acquire, Acq rel, Seq cst}

| Fence mo → mo ∈ {Relaxed, Release, Acquire, Acq rel, Consume, Seq cst}

| → true

end

val assumptions : (pre execution ∗ execution witness ∗ relation list) → bool

let assumptions (Xo, Xw , ) =

finite prefixes Xw .rf Xo.actions ∧

finite prefixes Xw .mo Xo.actions ∧

finite prefixes Xw .sc Xo.actions ∧

finite prefixes Xw .lo Xo.actions

let blocking observed actions sb =

(∀ a ∈ actions .

(is blocked rmw a ∨ is blocked lock a)

−→

¬ (∃ b ∈ actions . (a, b) ∈ sb))

let indeterminate sequencing Xo =

∀ a ∈ Xo.actions b ∈ Xo.actions .

(tid of a = tid of b) ∧ (a ̸= b) ∧

¬ (is at non atomic location Xo.lk a ∧ is at non atomic location Xo.lk b) −→

(a, b) ∈ Xo.sb ∨ (b, a) ∈ Xo.sb

let sbasw Xo = transitiveClosure (Xo.sb ∪ Xo.asw)

val well formed threads : (pre execution ∗ execution witness ∗

relation list) → bool

let well formed threads ((Xo, , ) : (pre execution ∗ execution witness ∗

relation list)) =

(∀ a ∈ Xo.actions . well formed action a) ∧

actions respect location kinds Xo.actions Xo.lk ∧
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blocking observed Xo.actions Xo.sb ∧

inj on aid of Xo.actions ∧

relation over Xo.actions Xo.sb ∧

relation over Xo.actions Xo.asw ∧

threadwise Xo.actions Xo.sb ∧

interthread Xo.actions Xo.asw ∧

isStrictPartialOrder Xo.sb ∧

isStrictPartialOrder Xo.dd ∧

Xo.dd ⊆ Xo.sb ∧

indeterminate sequencing Xo ∧

isIrreflexive (sbasw Xo) ∧

finite prefixes (sbasw Xo) Xo.actions

C.5 Assumptions on the thread-local semantics for Theorem 13

let pre execution mask Xo A =

let B = A ∩ Xo.actions in

⟨| actions = B ;

threads = Xo.threads ;

lk = Xo.lk ;

sb = relRestrict Xo.sb B ;

asw = relRestrict Xo.asw B ;

dd = relRestrict Xo.dd B

|⟩

let replace read value a v =

match a with

| Lock aid tid loc out → Lock aid tid loc Blocked

| Unlock aid tid loc → a

| Load aid tid ord loc rval → Load aid tid ord loc v

| Store aid tid ord loc wval → a

| RMW aid tid ord loc rval wval → RMW aid tid ord loc v wval

| Fence aid tid ord → a

| Blocked rmw aid tid loc → a

end

val downclosed : ∀ . set (action) → set (action ∗ action) → bool

let

downclosed A R = ∀ a b. b ∈ A ∧ (a, b) ∈ R −→ a ∈ A

let is prefix opsem p Xo A =
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opsem p Xo ∧ A ⊆ Xo.actions ∧ downclosed A (sbasw Xo) ∧ finite A

let fringe set Xo A = minimal elements (\ Xo.actions A) (sbasw Xo)

val relation plug : ∀. set (action ∗ action) → action → action →

set (action ∗ action)

let

relation plug R a a ′ =

{ (x , y) | ((x , y) ∈ R ∧ (x ̸= a) ∧ (y ̸= a)) ∨

((a, y) ∈ R ∧ (x = a ′) ∧ (y ̸= a)) ∨

((x , a) ∈ R ∧ (x ̸= a) ∧ (y = a ′)) ∨

((a, a) ∈ R ∧ (x = a ′) ∧ (y = a ′))

}

let

relation plug R a a ′ = {}

let pre execution plug Xo a a ′ =

⟨| actions = (\ Xo.actions {a}) ∪ {a ′};

threads = Xo.threads;

lk = Xo.lk ;

sb = relation plug Xo.sb a a ′;

asw = relation plug Xo.asw a a ′;

dd = relation plug Xo.dd a a ′

|⟩

let same prefix Xo1 Xo2 A =

let AF = A ∪ fringe set Xo1 A in

(pre execution mask Xo1 AF = pre execution mask Xo2 AF ) ∧

(fringe set Xo1 A = fringe set Xo2 A)

val receptiveness : ∀. (program → pre execution → bool) → bool

let

receptiveness opsem =

∀ p Xo A a.

is prefix opsem p Xo A ∧

a ∈ fringe set Xo A ∧

(is read a ∨ is successful lock a)

−→

∀ v .

let a ′ = replace read value a v in

∃ Xo ′.

is prefix opsem p Xo ′ A ∧
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a ′ ∈ fringe set Xo ′ A ∧

same prefix Xo ′ (pre execution plug Xo a a ′) A

let holds over prefix opsem p Xo A P =

is prefix opsem p Xo A ∧ P (pre execution mask Xo A)

val extends prefix : ∀. pre execution → set (action) → set (action) → bool

let

extends prefix Xo A A′ =

let fs = fringe set Xo A in

fs ̸= {} ∧

∃ fs ′.

(∀ a. a ∈ fs −→ a ∈ fs ′ ∨ ∃ v . replace read value a v ∈ fs ′) ∧

(A ∪ fs ′) ⊆ A′

val produce well formed threads : ∀. opsem t → bool

let

produce well formed threads (opsem : opsem t) =

∀ Xo p. ∃ Xw rl . opsem p Xo −→ well formed threads (Xo, Xw , rl)

let opsem assumptions opsem =

receptiveness opsem ∧

produce well formed threads opsem

C.6 Single-thread memory model

let visible side effect set actions hb =

{ (a, b) | ∀ (a, b) ∈ hb |

is write a ∧ is read b ∧ (loc of a = loc of b) ∧

¬ ( ∃ c ∈ actions . ¬ (c ∈ {a, b}) ∧

is write c ∧ (loc of c = loc of b) ∧

(a, c) ∈ hb ∧ (c, b) ∈ hb) }

val det read : pre execution ∗ execution witness ∗ relation list → bool

let det read (Xo, Xw , :: (“vse”, vse) :: ) =

∀ r ∈ Xo.actions .

is load r −→

(∃ w ∈ Xo.actions . (w , r) ∈ vse) =

(∃ w ′ ∈ Xo.actions . (w ′, r) ∈ Xw .rf )

val consistent non atomic rf : pre execution ∗ execution witness ∗

relation list → bool
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let consistent non atomic rf (Xo, Xw , :: (“vse”, vse) :: ) =

∀ (w , r) ∈ Xw .rf . is at non atomic location Xo.lk r −→

(w , r) ∈ vse

val well formed rf : pre execution ∗ execution witness ∗ relation list →

bool

let well formed rf (Xo, Xw , ) =

∀ (a, b) ∈ Xw .rf .

a ∈ Xo.actions ∧ b ∈ Xo.actions ∧

loc of a = loc of b ∧

is write a ∧ is read b ∧

value read by b = value written by a ∧

∀ a ′ ∈ Xo.actions . (a ′, b) ∈ Xw .rf −→ a = a ′

val sc mo lo empty : pre execution ∗ execution witness ∗ relation list →

bool

let sc mo lo empty ( , Xw , ) = null Xw .sc ∧ null Xw .mo ∧ null Xw .lo

val sc mo empty : pre execution ∗ execution witness ∗ relation list → bool

let sc mo empty ( , Xw , ) = null Xw .sc ∧ null Xw .mo

val sc empty : pre execution ∗ execution witness ∗ relation list → bool

let sc empty ( , Xw , ) = (null Xw .sc)

val tot empty : pre execution ∗ execution witness ∗ relation list → bool

let tot empty ( , Xw , ) = (null Xw .tot)

let single thread relations Xo Xw =

let hb = Xo.sb in

let vse = visible side effect set Xo.actions hb in

[ (“hb”, hb);

(“vse”, vse) ]

let single thread consistent execution =

Node [ (“assumptions”, Leaf assumptions);

(“sc mo lo empty”, Leaf sc mo lo empty);

(“tot empty”, Leaf tot empty);

(“well formed threads”, Leaf well formed threads);

(“well formed rf”, Leaf well formed rf);

(“consistent rf”,

Node [ (“det read”, Leaf det read);

(“consistent non atomic rf”, Leaf consistent non atomic rf) ]) ]
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val indeterminate reads : candidate execution → set action

let indeterminate reads (Xo, Xw , ) =

{b | ∀ b ∈ Xo.actions | is read b ∧ ¬ (∃ a ∈ Xo.actions . (a, b) ∈ Xw .rf )}

val unsequenced races : candidate execution → set (action ∗ action)

let unsequenced races (Xo, , ) =

{ (a, b) | ∀ a ∈ Xo.actions b ∈ Xo.actions |

is at non atomic location Xo.lk a ∧

¬ (a = b) ∧ (loc of a = loc of b) ∧ (is write a ∨ is write b) ∧

(tid of a = tid of b) ∧

¬ ((a, b) ∈ Xo.sb ∨ (b, a) ∈ Xo.sb) }

let single thread undefined behaviour =

[ Two (“unsequenced races”, unsequenced races);

One (“indeterminate reads”, indeterminate reads) ]

val single thread condition : ∀. condition t

let single thread condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .

∃ b ∈ Xo.actions . ∀ a ∈ Xo.actions .

(tid of a = tid of b) ∧

match (loc of a) with

| Nothing → false

| Just l → (Xo.lk l = Non Atomic)

end

let single thread memory model =

⟨| consistent = single thread consistent execution;

relation calculation = single thread relations;

undefined = single thread undefined behaviour;

relation flags =

⟨| rf flag = true;

mo flag = false;

sc flag = false;

lo flag = false;

tot flag = false |⟩

|⟩

val single thread behaviour : ∀. opsem t → program → program behaviours

let single thread behaviour opsem (p : program) =

behaviour single thread memory model single thread condition opsem p
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C.7 Locks-only memory model

let locks only sw actions asw lo a b =

(tid of a ̸= tid of b) ∧

( (* thread sync *)

(a, b) ∈ asw ∨

(* mutex sync *)

(is unlock a ∧ is lock b ∧ (a, b) ∈ lo)

)

let locks only sw set actions asw lo =

{ (a, b) | ∀ a ∈ actions b ∈ actions |

locks only sw actions asw lo a b }

let no consume hb sb sw =

transitiveClosure (sb ∪ sw)

let locks only relations Xo Xw =

let sw = locks only sw set Xo.actions Xo.asw Xw .lo in

let hb = no consume hb Xo.sb sw in

let vse = visible side effect set Xo.actions hb in

[ (“hb”, hb);

(“vse”, vse);

(“sw”, sw) ]

let locks only consistent lo (Xo, Xw , (“hb”, hb) :: ) =

relation over Xo.actions Xw .lo ∧

isTransitive Xw .lo ∧

isIrreflexive Xw .lo ∧

∀ a ∈ Xo.actions b ∈ Xo.actions .

((a, b) ∈ Xw .lo −→ ¬ ((b, a) ∈ hb)) ∧

( ((a, b) ∈ Xw .lo ∨ (b, a) ∈ Xw .lo)

=

( (¬ (a = b)) ∧

(is lock a ∨ is unlock a) ∧

(is lock b ∨ is unlock b) ∧

(loc of a = loc of b) ∧

is at mutex location Xo.lk a

)

)

val locks only consistent locks : pre execution ∗ execution witness ∗

relation list → bool
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let locks only consistent locks (Xo, Xw , ) =

(∀ (a, c) ∈ Xw .lo.

is successful lock a ∧ is successful lock c

−→

(∃ b ∈ Xo.actions . is unlock b ∧ (a, b) ∈ Xw .lo ∧ (b, c) ∈ Xw .lo))

val consistent hb : pre execution ∗ execution witness ∗ relation list → bool

let consistent hb (Xo, , (“hb”, hb) :: ) =

isIrreflexive (transitiveClosure hb)

let locks only consistent execution =

Node [ (“assumptions”, Leaf assumptions);

(“sc mo empty”, Leaf sc mo empty);

(“tot empty”, Leaf tot empty);

(“well formed threads”, Leaf well formed threads);

(“well formed rf”, Leaf well formed rf);

(“locks only consistent locks”, Leaf locks only consistent locks);

(“locks only consistent lo”, Leaf locks only consistent lo);

(“consistent hb”, Leaf consistent hb);

(“consistent rf”,

Node [ (“det read”, Leaf det read);

(“consistent non atomic rf”, Leaf consistent non atomic rf) ]) ]

let locks only good mutex use actions lk sb lo a =

(* violated requirement: The calling thread shall own the mutex. *)

( is unlock a

−→

( ∃ al ∈ actions .

is successful lock al ∧ (al , a) ∈ sb ∧ (al , a) ∈ lo ∧

∀ au ∈ actions .

is unlock au −→ ¬ ((al , au) ∈ lo ∧ (au, a) ∈ lo)

)

) ∧

(* violated requirement: The calling thread does not own the mutex. *)

( is lock a

−→

∀ al ∈ actions .

is successful lock al ∧ (al , a) ∈ sb ∧ (al , a) ∈ lo

−→

∃ au ∈ actions .

is unlock au ∧ (al , au) ∈ lo ∧ (au, a) ∈ lo
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)

val locks only bad mutexes : candidate execution → set action

let locks only bad mutexes (Xo, Xw , ) =

{ a | ∀ a ∈ Xo.actions |

¬ (locks only good mutex use Xo.actions Xo.lk Xo.sb Xw .lo a)}

val data races : candidate execution → set (action ∗ action)

let data races (Xo, Xw , (“hb”, hb) :: ) =

{ (a, b) | ∀ a ∈ Xo.actions b ∈ Xo.actions |

¬ (a = b) ∧ (loc of a = loc of b) ∧ (is write a ∨ is write b) ∧

(tid of a ̸= tid of b) ∧

¬ (is atomic action a ∧ is atomic action b) ∧

¬ ((a, b) ∈ hb ∨ (b, a) ∈ hb) }

let locks only undefined behaviour =

[ Two (“unsequenced races”, unsequenced races);

Two (“data races”, data races);

One (“indeterminate reads”, indeterminate reads);

One (“locks only bad mutexes”, locks only bad mutexes) ]

val locks only condition : ∀. condition t

let locks only condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .

∀ a ∈ Xo.actions .

match (loc of a) with

| Nothing → false

| Just l → (Xo.lk l ∈ {Mutex, Non Atomic})

end

let locks only memory model =

⟨| consistent = locks only consistent execution;

relation calculation = locks only relations;

undefined = locks only undefined behaviour;

relation flags =

⟨| rf flag = true;

mo flag = false;

sc flag = false;

lo flag = true;

tot flag = false |⟩

|⟩
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val locks only behaviour : ∀ . opsem t → program → program behaviours

let locks only behaviour opsem (p : program) =

behaviour locks only memory model locks only condition opsem p

C.8 Relaxed-only memory model

val consistent atomic rf : pre execution ∗ execution witness ∗ relation list →

bool

let consistent atomic rf (Xo, Xw , (“hb”, hb) :: ) =

∀ (w , r) ∈ Xw .rf . is at atomic location Xo.lk r ∧ is load r −→

¬ ((r , w) ∈ hb)

val rmw atomicity : pre execution ∗ execution witness ∗ relation list →

bool

let rmw atomicity (Xo, Xw , ) =

∀ b ∈ Xo.actions a ∈ Xo.actions .

is RMW b −→ (adjacent less than Xw .mo Xo.actions a b = ((a, b) ∈ Xw .rf ))

val coherent memory use : pre execution ∗ execution witness ∗

relation list → bool

let coherent memory use (Xo, Xw , (“hb”, hb) :: ) =

(* CoRR *)

( ¬ ( ∃ (a, b) ∈ Xw .rf (c, d) ∈ Xw .rf .

(b, d) ∈ hb ∧ (c, a) ∈ Xw .mo ) ) ∧

(* CoWR *)

( ¬ ( ∃ (a, b) ∈ Xw .rf c ∈ Xo.actions .

(c, b) ∈ hb ∧ (a, c) ∈ Xw .mo ) ) ∧

(* CoRW *)

( ¬ ( ∃ (a, b) ∈ Xw .rf c ∈ Xo.actions .

(b, c) ∈ hb ∧ (c, a) ∈ Xw .mo ) ) ∧

(* CoWW *)

( ¬ (∃ (a, b) ∈ hb. (b, a) ∈ Xw .mo) )

val consistent mo : pre execution ∗ execution witness ∗ relation list → bool

let consistent mo (Xo, Xw , ) =

relation over Xo.actions Xw .mo ∧

isTransitive Xw .mo ∧

isIrreflexive Xw .mo ∧

∀ a ∈ Xo.actions b ∈ Xo.actions .

((a, b) ∈ Xw .mo ∨ (b, a) ∈ Xw .mo)
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= ( (¬ (a = b)) ∧

is write a ∧ is write b ∧

(loc of a = loc of b) ∧

is at atomic location Xo.lk a )

let relaxed only consistent execution =

Node [ (“assumptions”, Leaf assumptions);

(“sc empty”, Leaf sc empty);

(“tot empty”, Leaf tot empty);

(“well formed threads”, Leaf well formed threads);

(“well formed rf”, Leaf well formed rf);

(“locks only consistent locks”, Leaf locks only consistent locks);

(“locks only consistent lo”, Leaf locks only consistent lo);

(“consistent mo”, Leaf consistent mo);

(“consistent hb”, Leaf consistent hb);

(“consistent rf”,

Node [ (“det read”, Leaf det read);

(“consistent non atomic rf”, Leaf consistent non atomic rf);

(“consistent atomic rf”, Leaf consistent atomic rf);

(“coherent memory use”, Leaf coherent memory use);

(“rmw atomicity”, Leaf rmw atomicity) ]) ]

val relaxed only condition : ∀. condition t

let relaxed only condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .

∀ a ∈ Xo.actions .

match a with

| Lock → true

| Unlock → true

| Load mo → mo ∈ {NA, Relaxed}

| Store mo → mo ∈ {NA, Relaxed}

| RMW mo → mo ∈ {Relaxed}

| Fence → false

| Blocked rmw → true

end

let relaxed only memory model =

⟨| consistent = relaxed only consistent execution;

relation calculation = locks only relations;

undefined = locks only undefined behaviour;

relation flags =
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⟨| rf flag = true;

mo flag = true;

sc flag = false;

lo flag = true;

tot flag = false |⟩

|⟩

val relaxed only behaviour : ∀. opsem t → program → program behaviours

let relaxed only behaviour opsem (p : program) =

behaviour relaxed only memory model relaxed only condition opsem p

C.9 Release-acquire memory model

val release acquire coherent memory use : pre execution ∗ execution witness ∗

relation list → bool

let release acquire coherent memory use (Xo, Xw , (“hb”, hb) :: ) =

(* CoWR *)

( ¬ ( ∃ (a, b) ∈ Xw .rf c ∈ Xo.actions .

(c, b) ∈ hb ∧ (a, c) ∈ Xw .mo ) ) ∧

(* CoWW *)

( ¬ (∃ (a, b) ∈ hb. (b, a) ∈ Xw .mo) )

val atomic initialisation first : pre execution ∗ execution witness ∗

relation list → bool

let atomic initialisation first (Xo, , ) =

∀ a ∈ Xo.actions b ∈ Xo.actions .

is at atomic location Xo.lk a ∧ is NA store a ∧

is write b ∧ (loc of a = loc of b) ∧ (a ̸= b) −→

((a, b) ∈ transitiveClosure (Xo.sb ∪ Xo.asw)) ∧ ¬ (is NA store b)

val release acquire condition : ∀. condition t

let release acquire condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .

atomic initialisation first (Xo, Xw , rl) ∧

∀ a ∈ Xo.actions .

match a with

| Lock → true

| Unlock → true

| Load mo → (mo ∈ {NA, Acquire})

| Store mo → (mo ∈ {NA, Release})
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| RMW mo → mo = Acq rel

| Fence → false

| Blocked rmw → true

end

let release acquire synchronizes with actions sb asw rf lo a b =

(tid of a ̸= tid of b) ∧

( (* thread sync *)

(a, b) ∈ asw ∨

(* mutex sync *)

(is unlock a ∧ is lock b ∧ (a, b) ∈ lo) ∨

(* rel/acq sync *)

( is release a ∧ is acquire b ∧ (a, b) ∈ rf )

)

let release acquire synchronizes with set actions sb asw rf lo =

{ (a, b) | ∀ a ∈ actions b ∈ actions |

release acquire synchronizes with actions sb asw rf lo a b}

let release acquire relations Xo Xw =

let sw = release acquire synchronizes with set

Xo.actions Xo.sb Xo.asw Xw .rf Xw .lo in

let hb = no consume hb Xo.sb sw in

let vse = visible side effect set Xo.actions hb in

[ (“hb”, hb);

(“vse”, vse);

(“sw”, sw) ]

let release acquire consistent execution =

Node [ (“assumptions”, Leaf assumptions);

(“sc empty”, Leaf sc empty);

(“tot empty”, Leaf tot empty);

(“well formed threads”, Leaf well formed threads);

(“well formed rf”, Leaf well formed rf);

(“locks only consistent locks”, Leaf locks only consistent locks);

(“locks only consistent lo”, Leaf locks only consistent lo);

(“consistent mo”, Leaf consistent mo);

(“consistent hb”, Leaf consistent hb);

(“consistent rf”,

Node [ (“det read”, Leaf det read);

(“consistent non atomic rf”, Leaf consistent non atomic rf);

(“consistent atomic rf”, Leaf consistent atomic rf);
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(“release acquire coherent memory use”, Leaf release acquire coherent memory use);

(“rmw atomicity”, Leaf rmw atomicity) ]) ]

let release acquire memory model =

⟨| consistent = relaxed only consistent execution;

relation calculation = release acquire relations;

undefined = locks only undefined behaviour;

relation flags =

⟨| rf flag = true;

mo flag = true;

sc flag = false;

lo flag = true;

tot flag = false |⟩

|⟩

val release acquire behaviour : ∀. opsem t → program → program behaviours

let release acquire behaviour opsem (p : program) =

behaviour release acquire memory model release acquire condition opsem p

C.10 Release-acquire-relaxed memory model

val release acquire relaxed condition : ∀. condition t

let release acquire relaxed condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .

∀ a ∈ Xo.actions .

match a with

| Lock → true

| Unlock → true

| Load mo → (mo ∈ {NA, Acquire, Relaxed})

| Store mo → (mo ∈ {NA, Release, Relaxed})

| RMW mo → (mo ∈ {Acq rel, Acquire, Release, Relaxed})

| Fence → false

| Blocked rmw → true

end

let release acquire relaxed synchronizes with actions sb asw rf lo rs a b =

(tid of a ̸= tid of b) ∧

( (* thread sync *)

(a, b) ∈ asw ∨

(* mutex sync *)

(is unlock a ∧ is lock b ∧ (a, b) ∈ lo) ∨
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(* rel/acq sync *)

( is release a ∧ is acquire b ∧

(∃ c ∈ actions . (a, c) ∈ rs ∧ (c, b) ∈ rf ) )

)

let rs element head a =

(tid of a = tid of head) ∨ is RMW a

let release sequence set actions lk mo =

{ (rel , b) | ∀ rel ∈ actions b ∈ actions |

is release rel ∧

( (b = rel) ∨

( (rel , b) ∈ mo ∧

rs element rel b ∧

∀ c ∈ actions .

((rel , c) ∈ mo ∧ (c, b) ∈ mo) −→ rs element rel c ) ) }

let release acquire relaxed synchronizes with set actions sb asw rf lo rs =

{ (a, b) | ∀ a ∈ actions b ∈ actions |

release acquire relaxed synchronizes with actions sb asw rf lo rs a b}

let release acquire relaxed relations Xo Xw =

let rs = release sequence set Xo.actions Xo.lk Xw .mo in

let sw = release acquire relaxed synchronizes with setXo.actions Xo.sb Xo.asw Xw .rf Xw .lo rs in

let hb = no consume hb Xo.sb sw in

let vse = visible side effect set Xo.actions hb in

[ (“hb”, hb);

(“vse”, vse);

(“sw”, sw);

(“rs”, rs) ]

let release acquire relaxed memory model =

⟨| consistent = relaxed only consistent execution;

relation calculation = release acquire relaxed relations;

undefined = locks only undefined behaviour;

relation flags =

⟨| rf flag = true;

mo flag = true;

sc flag = false;

lo flag = true;

tot flag = false |⟩

|⟩
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val release acquire relaxed behaviour : ∀. opsem t → program →

program behaviours

let release acquire relaxed behaviour opsem (p : program) =

behaviour release acquire relaxed memory model release acquire relaxed condition opsem p

C.11 Release-acquire-fenced memory model

val release acquire fenced condition : ∀. condition t

let release acquire fenced condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .

∀ a ∈ Xo.actions .

match a with

| Lock → true

| Unlock → true

| Load mo → (mo ∈ {NA, Acquire, Relaxed})

| Store mo → (mo ∈ {NA, Release, Relaxed})

| RMW mo → (mo ∈ {Acq rel, Acquire, Release, Relaxed})

| Fence mo → (mo ∈ {Release, Acquire, Relaxed})

| Blocked rmw → true

end

let release acquire fenced synchronizes with actions sb asw rf lo rs hrs a b =

(tid of a ̸= tid of b) ∧

( (* thread sync *)

(a, b) ∈ asw ∨

(* mutex sync *)

(is unlock a ∧ is lock b ∧ (a, b) ∈ lo) ∨

(* rel/acq sync *)

( is release a ∧ is acquire b ∧

(∃ c ∈ actions . (a, c) ∈ rs ∧ (c, b) ∈ rf ) ) ∨

(* fence synchronisation *)

( is fence a ∧ is release a ∧ is fence b ∧ is acquire b ∧

∃ x ∈ actions z ∈ actions y ∈ actions .

(a, x ) ∈ sb ∧ (x , z ) ∈ hrs ∧ (z , y) ∈ rf ∧ (y , b) ∈ sb) ∨

( is fence a ∧ is release a ∧ is acquire b ∧

∃ x ∈ actions y ∈ actions .

(a, x ) ∈ sb ∧ (x , y) ∈ hrs ∧ (y , b) ∈ rf ) ∨

( is release a ∧ is fence b ∧ is acquire b ∧

∃ y ∈ actions x ∈ actions .
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(a, y) ∈ rs ∧ (y , x ) ∈ rf ∧ (x , b) ∈ sb) )

let hypothetical release sequence set actions lk mo =

{ (a, b) | ∀ a ∈ actions b ∈ actions |

is atomic action a ∧

is write a ∧

( (b = a) ∨

( (a, b) ∈ mo ∧

rs element a b ∧

∀ c ∈ actions .

((a, c) ∈ mo ∧ (c, b) ∈ mo) −→ rs element a c ) ) }

let release acquire fenced synchronizes with set actions sb asw rf lo rs hrs =

{ (a, b) | ∀ a ∈ actions b ∈ actions |

release acquire fenced synchronizes with actions sb asw rf lo rs hrs a b}

let release acquire fenced relations Xo Xw =

let hrs = hypothetical release sequence set Xo.actions Xo.lk Xw .mo in

let rs = release sequence set Xo.actions Xo.lk Xw .mo in

let sw = release acquire fenced synchronizes with set Xo.actions Xo.sb Xo.asw Xw .rf Xw .lo rs hrs in

let hb = no consume hb Xo.sb sw in

let vse = visible side effect set Xo.actions hb in

[ (“hb”, hb);

(“vse”, vse);

(“sw”, sw);

(“rs”, rs);

(“hrs”, hrs) ]

let release acquire fenced memory model =

⟨| consistent = relaxed only consistent execution;

relation calculation = release acquire fenced relations;

undefined = locks only undefined behaviour;

relation flags =

⟨| rf flag = true;

mo flag = true;

sc flag = false;

lo flag = true;

tot flag = false |⟩

|⟩

val release acquire fenced behaviour : ∀. opsem t → program →

program behaviours

let release acquire fenced behaviour opsem (p : program) =
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behaviour release acquire fenced memory model release acquire fenced condition opsem p

C.12 SC-accesses memory model

val sc accesses condition : ∀. condition t

let sc accesses condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .

∀ a ∈ Xo.actions .

match a with

| Lock → true

| Unlock → true

| Load mo → (mo ∈ {NA, Acquire, Relaxed, Seq cst})

| Store mo → (mo ∈ {NA, Release, Relaxed, Seq cst})

| RMW mo → (mo ∈ {Acq rel, Acquire, Release, Relaxed, Seq cst})

| Fence mo → (mo ∈ {Release, Acquire, Relaxed})

| Blocked rmw → true

end

val sc accesses consistent sc : pre execution ∗ execution witness ∗

relation list → bool

let sc accesses consistent sc (Xo, Xw , (“hb”, hb) :: ) =

relation over Xo.actions Xw .sc ∧

isTransitive Xw .sc ∧

isIrreflexive Xw .sc ∧

∀ a ∈ Xo.actions b ∈ Xo.actions .

((a, b) ∈ Xw .sc −→ ¬ ((b, a) ∈ hb ∪ Xw .mo)) ∧

( ((a, b) ∈ Xw .sc ∨ (b, a) ∈ Xw .sc) =

( (¬ (a = b)) ∧ is seq cst a ∧ is seq cst b)

)

val sc accesses sc reads restricted : pre execution ∗ execution witness ∗

relation list → bool

let sc accesses sc reads restricted (Xo, Xw , (“hb”, hb) :: ) =

∀ (w , r) ∈ Xw .rf . is seq cst r −→

( is seq cst w ∧ (w , r) ∈ Xw .sc ∧

¬ (∃ w ′ ∈ Xo.actions .

is write w ′ ∧ (loc of w = loc of w ′) ∧

(w , w ′) ∈ Xw .sc ∧ (w ′, r) ∈ Xw .sc ) ) ∨

( ¬ (is seq cst w) ∧

¬ (∃ w ′ ∈ Xo.actions .
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is write w ′ ∧ (loc of w = loc of w ′) ∧

(w , w ′) ∈ hb ∧ (w ′, r) ∈ Xw .sc ) )

let sc accesses consistent execution =

Node [ (“assumptions”, Leaf assumptions);

(“tot empty”, Leaf tot empty);

(“well formed threads”, Leaf well formed threads);

(“well formed rf”, Leaf well formed rf);

(“locks only consistent locks”, Leaf locks only consistent locks);

(“locks only consistent lo”, Leaf locks only consistent lo);

(“consistent mo”, Leaf consistent mo);

(“sc accesses consistent sc”, Leaf sc accesses consistent sc);

(“consistent hb”, Leaf consistent hb);

(“consistent rf”,

Node [ (“det read”, Leaf det read);

(“consistent non atomic rf”, Leaf consistent non atomic rf);

(“consistent atomic rf”, Leaf consistent atomic rf);

(“coherent memory use”, Leaf coherent memory use);

(“rmw atomicity”, Leaf rmw atomicity);

(“sc accesses sc reads restricted”, Leaf sc accesses sc reads restricted) ]) ]

let sc accesses memory model =

⟨| consistent = sc accesses consistent execution;

relation calculation = release acquire fenced relations;

undefined = locks only undefined behaviour;

relation flags =

⟨| rf flag = true;

mo flag = true;

sc flag = true;

lo flag = true;

tot flag = false |⟩

|⟩

val sc accesses behaviour : ∀. opsem t → program → program behaviours

let sc accesses behaviour opsem (p : program) =

behaviour sc accesses memory model sc accesses condition opsem p

C.13 SC-fenced memory model

val sc fenced condition : ∀. condition t

let sc fenced condition (Xs : set candidate execution) =
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∀ (Xo, Xw , rl) ∈ Xs .

∀ a ∈ Xo.actions .

match a with

| Lock → true

| Unlock → true

| Load mo → (mo ∈ {NA, Acquire, Relaxed, Seq cst})

| Store mo → (mo ∈ {NA, Release, Relaxed, Seq cst})

| RMW mo → (mo ∈ {Acq rel, Acquire, Release, Relaxed, Seq cst})

| Fence mo → (mo ∈ {Release, Acquire, Relaxed, Seq cst})

| Blocked rmw → true

end

val sc fenced sc fences heeded : pre execution ∗ execution witness ∗

relation list → bool

let sc fenced sc fences heeded (Xo, Xw , ) =

∀ f ∈ Xo.actions f ′ ∈ Xo.actions

r ∈ Xo.actions

w ∈ Xo.actions w ′ ∈ Xo.actions .

¬ ( is fence f ∧ is fence f ′ ∧

( (* fence restriction N3291 29.3p4 *)

( (w , w ′) ∈ Xw .mo ∧

(w ′, f ) ∈ Xw .sc ∧

(f , r) ∈ Xo.sb ∧

(w , r) ∈ Xw .rf ) ∨

(* fence restriction N3291 29.3p5 *)

( (w , w ′) ∈ Xw .mo ∧

(w ′, f ) ∈ Xo.sb ∧

(f , r) ∈ Xw .sc ∧

(w , r) ∈ Xw .rf ) ∨

(* fence restriction N3291 29.3p6 *)

( (w , w ′) ∈ Xw .mo ∧

(w ′, f ) ∈ Xo.sb ∧

(f , f ′) ∈ Xw .sc ∧

(f ′, r) ∈ Xo.sb ∧

(w , r) ∈ Xw .rf ) ∨

(* SC fences impose mo N3291 29.3p7 *)

( (w ′, f ) ∈ Xo.sb ∧

(f , f ′) ∈ Xw .sc ∧

(f ′, w) ∈ Xo.sb ∧

(w , w ′) ∈ Xw .mo ) ∨
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(* N3291 29.3p7, w collapsed first write*)

( (w ′, f ) ∈ Xw .sc ∧

(f , w) ∈ Xo.sb ∧

(w , w ′) ∈ Xw .mo ) ∨

(* N3291 29.3p7, w collapsed second write*)

( (w ′, f ) ∈ Xo.sb ∧

(f , w) ∈ Xw .sc ∧

(w , w ′) ∈ Xw .mo ) ) )

let sc fenced consistent execution =

Node [ (“assumptions”, Leaf assumptions);

(“tot empty”, Leaf tot empty);

(“well formed threads”, Leaf well formed threads);

(“well formed rf”, Leaf well formed rf);

(“locks only consistent locks”, Leaf locks only consistent locks);

(“locks only consistent lo”, Leaf locks only consistent lo);

(“consistent mo”, Leaf consistent mo);

(“sc accesses consistent sc”, Leaf sc accesses consistent sc);

(“sc fenced sc fences heeded”, Leaf sc fenced sc fences heeded);

(“consistent hb”, Leaf consistent hb);

(“consistent rf”,

Node [ (“det read”, Leaf det read);

(“consistent non atomic rf”, Leaf consistent non atomic rf);

(“consistent atomic rf”, Leaf consistent atomic rf);

(“coherent memory use”, Leaf coherent memory use);

(“rmw atomicity”, Leaf rmw atomicity);

(“sc accesses sc reads restricted”, Leaf sc accesses sc reads restricted) ]) ]

let sc fenced memory model =

⟨| consistent = sc fenced consistent execution;

relation calculation = release acquire fenced relations;

undefined = locks only undefined behaviour;

relation flags =

⟨| rf flag = true;

mo flag = true;

sc flag = true;

lo flag = true;

tot flag = false |⟩

|⟩

val sc fenced behaviour : ∀. opsem t → program → program behaviours
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let sc fenced behaviour opsem (p : program) =

behaviour sc fenced memory model sc fenced condition opsem p

C.14 With-consume memory model

let with consume cad set actions sb dd rf = transitiveClosure ( (rf ∩ sb) ∪ dd )

let with consume dob actions rf rs cad w a =

tid of w ̸= tid of a ∧

∃ w ′ ∈ actions r ∈ actions .

is consume r ∧

(w , w ′) ∈ rs ∧ (w ′, r) ∈ rf ∧

( (r , a) ∈ cad ∨ (r = a) )

let dependency ordered before actions rf rs cad a d =

a ∈ actions ∧ d ∈ actions ∧

( ∃ b ∈ actions . is release a ∧ is consume b ∧

(∃ e ∈ actions . (a, e) ∈ rs ∧ (e, b) ∈ rf ) ∧

( (b, d) ∈ cad ∨ (b = d) ) )

let with consume dob set actions rf rs cad =

{ (a, b) | ∀ a ∈ actions b ∈ actions |

dependency ordered before actions rf rs cad a b}

let compose R1 R2 =

{ (w , z ) | ∀ (w , x ) ∈ R1 (y , z ) ∈ R2 | (x = y) }

let inter thread happens before actions sb sw dob =

let r = sw ∪ dob ∪ (compose sw sb) in

transitiveClosure (r ∪ (compose sb r))

let happens before actions sb ithb =

sb ∪ ithb

let with consume relations Xo Xw =

let hrs = hypothetical release sequence set Xo.actions Xo.lk Xw .mo in

let rs = release sequence set Xo.actions Xo.lk Xw .mo in

let sw = release acquire fenced synchronizes with set Xo.actions Xo.sb Xo.asw Xw .rf Xw .lo rs hrs in

let cad = with consume cad set Xo.actions Xo.sb Xo.dd Xw .rf in

let dob = with consume dob set Xo.actions Xw .rf rs cad in

let ithb = inter thread happens before Xo.actions Xo.sb sw dob in

let hb = happens before Xo.actions Xo.sb ithb in

let vse = visible side effect set Xo.actions hb in

[ (“hb”, hb);
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(“vse”, vse);

(“ithb”, ithb);

(“sw”, sw);

(“rs”, rs);

(“hrs”, hrs);

(“dob”, dob);

(“cad”, cad) ]

let with consume consistent execution =

Node [ (“assumptions”, Leaf assumptions);

(“tot empty”, Leaf tot empty);

(“well formed threads”, Leaf well formed threads);

(“well formed rf”, Leaf well formed rf);

(“locks only consistent locks”, Leaf locks only consistent locks);

(“locks only consistent lo”, Leaf locks only consistent lo);

(“consistent mo”, Leaf consistent mo);

(“sc accesses consistent sc”, Leaf sc accesses consistent sc);

(“sc fenced sc fences heeded”, Leaf sc fenced sc fences heeded);

(“consistent hb”, Leaf consistent hb);

(“consistent rf”,

Node [ (“det read”, Leaf det read);

(“consistent non atomic rf”, Leaf consistent non atomic rf);

(“consistent atomic rf”, Leaf consistent atomic rf);

(“coherent memory use”, Leaf coherent memory use);

(“rmw atomicity”, Leaf rmw atomicity);

(“sc accesses sc reads restricted”, Leaf sc accesses sc reads restricted) ]) ]

let with consume memory model =

⟨| consistent = with consume consistent execution;

relation calculation = with consume relations;

undefined = locks only undefined behaviour;

relation flags =

⟨| rf flag = true;

mo flag = true;

sc flag = true;

lo flag = true;

tot flag = false |⟩

|⟩

val with consume behaviour : ∀. opsem t → program → program behaviours

let with consume behaviour opsem (p : program) =
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behaviour with consume memory model true condition opsem p

C.15 Standard memory model

let standard vsses actions lk mo hb vse =

{ (v , r) | ∀ r ∈ actions v ∈ actions head ∈ actions |

is at atomic location lk r ∧ (head , r) ∈ vse ∧

¬ (∃ v ′ ∈ actions . (v ′, r) ∈ vse ∧ (head , v ′) ∈ mo) ∧

( v = head ∨

( (head , v) ∈ mo ∧ ¬ ((r , v) ∈ hb) ∧

∀ w ∈ actions .

((head , w) ∈ mo ∧ (w , v) ∈ mo) −→ ¬ ((r , w) ∈ hb)

)

)

}

let standard relations Xo Xw =

let hrs = hypothetical release sequence set Xo.actions Xo.lk Xw .mo in

let rs = release sequence set Xo.actions Xo.lk Xw .mo in

let sw = release acquire fenced synchronizes with set Xo.actions Xo.sb Xo.asw Xw .rf Xw .lo rs hrs in

let cad = with consume cad set Xo.actions Xo.sb Xo.dd Xw .rf in

let dob = with consume dob set Xo.actions Xw .rf rs cad in

let ithb = inter thread happens before Xo.actions Xo.sb sw dob in

let hb = happens before Xo.actions Xo.sb ithb in

let vse = visible side effect set Xo.actions hb in

let vsses = standard vsses Xo.actions Xo.lk Xw .mo hb vse in

[ (“hb”, hb);

(“vse”, vse);

(“ithb”, ithb);

(“vsses”, vsses);

(“sw”, sw);

(“rs”, rs);

(“hrs”, hrs);

(“dob”, dob);

(“cad”, cad) ]

val standard consistent atomic rf : pre execution ∗ execution witness ∗

relation list → bool

let standard consistent atomic rf (Xo, Xw , :: :: :: (“vsses”, vsses) :: ) =

∀ (w , r) ∈ Xw .rf . is at atomic location Xo.lk r ∧ is load r−→
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(w , r) ∈ vsses

let standard consistent execution =

Node [ (“assumptions”, Leaf assumptions);

(“tot empty”, Leaf tot empty);

(“well formed threads”, Leaf well formed threads);

(“well formed rf”, Leaf well formed rf);

(“locks only consistent locks”, Leaf locks only consistent locks);

(“locks only consistent lo”, Leaf locks only consistent lo);

(“consistent mo”, Leaf consistent mo);

(“sc accesses consistent sc”, Leaf sc accesses consistent sc);

(“sc fenced sc fences heeded”, Leaf sc fenced sc fences heeded);

(“consistent hb”, Leaf consistent hb);

(“consistent rf”,

Node [ (“det read”, Leaf det read);

(“consistent non atomic rf”, Leaf consistent non atomic rf);

(“standard consistent atomic rf”,

Leaf standard consistent atomic rf);

(“coherent memory use”, Leaf coherent memory use);

(“rmw atomicity”, Leaf rmw atomicity);

(“sc accesses sc reads restricted”,

Leaf sc accesses sc reads restricted) ]) ]

let standard memory model =

⟨| consistent = standard consistent execution;

relation calculation = standard relations;

undefined = locks only undefined behaviour;

relation flags =

⟨| rf flag = true;

mo flag = true;

sc flag = true;

lo flag = true;

tot flag = false |⟩

|⟩

val standard behaviour : ∀. opsem t → program → program behaviours

let standard behaviour opsem (p : program) =

behaviour standard memory model true condition opsem p

C.16 Release-acquire-SC memory model

val release acquire SC condition : ∀. condition t
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let release acquire SC condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .

atomic initialisation first (Xo, Xw , rl) ∧

∀ a ∈ Xo.actions .

match a with

| Lock → true

| Unlock → true

| Load mo → (mo ∈ {NA, Acquire, Seq cst})

| Store mo → (mo ∈ {NA, Release, Seq cst})

| RMW mo → (mo ∈ {Acq rel, Seq cst})

| Fence mo → (mo ∈ {Seq cst})

| Blocked rmw → true

end

let release acquire SC memory model =

⟨| consistent = sc fenced consistent execution;

relation calculation = release acquire relations;

undefined = locks only undefined behaviour;

relation flags =

⟨| rf flag = true;

mo flag = true;

sc flag = true;

lo flag = true;

tot flag = false |⟩

|⟩

val release acquire SC behaviour : ∀. opsem t → program →

program behaviours

let release acquire SC behaviour opsem (p : program) =

behaviour release acquire SC memory model release acquire SC condition opsem p

val release acquire SC rf behaviour : ∀. opsem t → program →

rf program behaviours

let release acquire SC rf behaviour opsem (p : program) =

rf behaviour release acquire SC memory model release acquire SC condition opsem p

C.17 SC memory model

val SC condition : ∀. condition t

let SC condition (Xs : set candidate execution) =
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∀ (Xo, Xw , rl) ∈ Xs .

atomic initialisation first (Xo, Xw , rl) ∧

∀ a ∈ Xo.actions .

match a with

| Lock → true

| Unlock → true

| Load mo → (mo ∈ {NA, Seq cst})

| Store mo → (mo ∈ {NA, Seq cst})

| RMW mo → (mo ∈ {Seq cst})

| Fence mo → false

| Blocked rmw → true

end

let SC memory model =

⟨| consistent = sc accesses consistent execution;

relation calculation = release acquire relations;

undefined = locks only undefined behaviour;

relation flags =

⟨| rf flag = true;

mo flag = true;

sc flag = true;

lo flag = true;

tot flag = false |⟩

|⟩

val SC behaviour : ∀. opsem t → program → program behaviours

let SC behaviour opsem (p : program) =

behaviour SC memory model SC condition opsem p

C.18 Total memory model

val atomic initialisation before all : pre execution ∗ execution witness ∗

relation list → bool

let atomic initialisation before all (Xo, , ) =

∀ a ∈ Xo.actions b ∈ Xo.actions .

is at atomic location Xo.lk a ∧ is NA store a ∧

(loc of a = loc of b) ∧ (a ̸= b) −→

((a, b) ∈ transitiveClosure (Xo.sb ∪ Xo.asw)) ∧ ¬ (is NA store b)

val bounded executions : ∀. set candidate execution → bool
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let bounded executions (Xs : set candidate execution) =

∃ N . ∀ (Xo, Xw , rl) ∈ Xs .

finite Xo.actions ∧

size Xo.actions < N

val tot condition : ∀. condition t

let tot condition (Xs : set candidate execution) =

bounded executions Xs ∧

∀ (Xo, Xw , rl) ∈ Xs .

atomic initialisation before all (Xo, Xw , rl) ∧

∀ a ∈ Xo.actions .

match a with

| Lock → true

| Unlock → true

| Load mo → (mo ∈ {NA, Seq cst})

| Store mo → (mo ∈ {NA, Seq cst})

| RMW mo → (mo ∈ {Seq cst})

| Fence mo → false

| Blocked rmw → true

end

let tot relations Xo Xw =

let vse = visible side effect set Xo.actions Xw .tot in

[ (“empty”, {});

(“vse”, vse);

]

val tot det read : pre execution ∗ execution witness ∗ relation list → bool

let tot det read (Xo, Xw , :: (“vse”, vse) :: ) =

∀ r ∈ Xo.actions .

(∃ w ∈ Xo.actions . (w , r) ∈ vse) =

(∃ w ′ ∈ Xo.actions . (w ′, r) ∈ Xw .rf )

val tot consistent rf : pre execution ∗ execution witness ∗ relation list →

bool

let tot consistent rf (Xo, Xw , :: (“vse”, vse) :: ) =

∀ (w , r) ∈ Xw .rf . (w , r) ∈ vse

val tot consistent locks : pre execution ∗ execution witness ∗ relation list →

bool

let tot consistent locks (Xo, Xw , ) =

(∀ (a, c) ∈ Xw .tot .
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is successful lock a ∧ is successful lock c ∧ (loc of a = loc of c)

−→

(∃ b ∈ Xo.actions . (loc of a = loc of b) ∧ is unlock b ∧ (a, b) ∈ Xw .tot ∧ (b, c) ∈ Xw .tot))

val tot consistent tot : pre execution ∗ execution witness ∗ relation list →

bool

let tot consistent tot (Xo, Xw , ) =

relation over Xo.actions Xw .tot ∧

isTransitive Xw .tot ∧

isIrreflexive Xw .tot ∧

isTrichotomousOn Xw .tot Xo.actions ∧

Xo.sb ⊆ Xw .tot ∧

Xo.asw ⊆ Xw .tot ∧

finite prefixes Xw .tot Xo.actions

val tot assumptions : pre execution ∗ execution witness ∗ relation list →

bool

let tot assumptions (Xo, Xw , ) =

finite prefixes Xw .rf Xo.actions

let tot consistent execution =

Node [ (“tot assumptions”, Leaf tot assumptions);

(“well formed threads”, Leaf well formed threads);

(“well formed rf”, Leaf well formed rf);

(“tot conistent tot”, Leaf tot consistent tot);

(“tot consistent locks”, Leaf tot consistent locks);

(“consistent rf”,

Node [ (“det read”, Leaf tot det read);

(“tot consistent rf”, Leaf tot consistent rf)

]

)

]

let tot bad mutexes (Xo, Xw , ) =

{ a | ∀ a ∈ Xo.actions |

let lo = { (a, b) | ∀ a ∈ Xo.actions b ∈ Xo.actions |

((a, b) ∈ Xw .tot) ∧ (loc of a = loc of b) ∧

is at mutex location Xo.lk a

} in

¬ (locks only good mutex use Xo.actions Xo.lk Xo.sb lo a)}

let tot data races (Xo, Xw , ) =
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{ (a, b) | ∀ a ∈ Xo.actions b ∈ Xo.actions |

¬ (a = b) ∧ (loc of a = loc of b) ∧ (is write a ∨ is write b) ∧

(tid of a ̸= tid of b) ∧

¬ (is atomic action a ∧ is atomic action b) ∧

¬ ((a, b) ∈ Xo.asw) ∧

(a, b) ∈ Xw .tot ∧

¬ (∃ c ∈ Xo.actions . ((a, c) ∈ Xw .tot) ∧ ((c, b) ∈ Xw .tot)) }

let tot undefined behaviour =

[ Two (“unsequenced races”, unsequenced races);

Two (“data races”, tot data races);

One (“indeterminate reads”, indeterminate reads);

One (“tot bad mutexes”, tot bad mutexes) ]

let tot memory model =

⟨| consistent = tot consistent execution;

relation calculation = tot relations;

undefined = tot undefined behaviour;

relation flags =

⟨| rf flag = true;

mo flag = false;

sc flag = false;

lo flag = false;

tot flag = true; |⟩

|⟩

val tot behaviour : ∀. opsem t → program → program behaviours

let tot behaviour opsem (p : program) =

behaviour tot memory model tot condition opsem p

val tot rf behaviour : ∀. opsem t → program → rf program behaviours

let tot rf behaviour opsem (p : program) =

rf behaviour tot memory model tot condition opsem p

C.19 Theorems

val cond : ∀. (program → pre execution → bool) → program → bool

theorem {hol , isabelle, tex} thm0 :

(∀ opsem p.

(behaviour with consume memory model true condition opsem p =

behaviour standard memory model true condition opsem p))
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theorem {hol , isabelle, tex} thm1 :

(∀ opsem p.

statically satisfied sc fenced condition opsem p −→

(behaviour sc fenced memory model sc fenced condition opsem p =

behaviour with consume memory model true condition opsem p))

theorem {hol , isabelle, tex} thm2 :

(∀ opsem p.

statically satisfied sc accesses condition opsem p −→

(behaviour sc accesses memory model sc accesses condition opsem p =

behaviour sc fenced memory model sc fenced condition opsem p))

theorem {hol , isabelle, tex} thm3 :

(∀ opsem p.

statically satisfied release acquire fenced condition opsem p −→

(behaviour release acquire fenced memory model release acquire fenced condition opsem p =

behaviour sc accesses memory model sc accesses condition opsem p))

theorem {hol , isabelle, tex} thm4 :

(∀ opsem p.

statically satisfied release acquire relaxed condition opsem p −→

(behaviour release acquire relaxed memory model release acquire relaxed condition opsem p =

behaviour release acquire fenced memory model release acquire fenced condition opsem p))

theorem {hol , isabelle, tex} thm6 :

(∀ opsem p.

statically satisfied relaxed only condition opsem p −→

(behaviour relaxed only memory model relaxed only condition opsem p =

behaviour release acquire relaxed memory model release acquire relaxed condition opsem p))

theorem {hol , isabelle, tex} thm7 :

(∀ opsem p.

statically satisfied locks only condition opsem p −→

(behaviour locks only memory model locks only condition opsem p =

behaviour release acquire memory model release acquire condition opsem p))

theorem {hol , isabelle, tex} thm8 :

(∀ opsem p.

statically satisfied locks only condition opsem p −→

(behaviour locks only memory model locks only condition opsem p =

behaviour relaxed only memory model relaxed only condition opsem p))

theorem {hol , isabelle, tex} thm9 :

(∀ opsem p.
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statically satisfied single thread condition opsem p −→

(behaviour single thread memory model single thread condition opsem p =

behaviour locks only memory model locks only condition opsem p))

theorem {hol , isabelle, tex} thm10 :

(∀ opsem p.

statically satisfied release acquire SC condition opsem p −→

(behaviour sc fenced memory model sc fenced condition opsem p =

behaviour release acquire SC memory model release acquire SC condition opsem p))

theorem {hol , isabelle, tex} thm5 :

(∀ opsem p.

statically satisfied release acquire condition opsem p −→

(behaviour release acquire memory model release acquire condition opsem p =

behaviour release acquire SC memory model release acquire SC condition opsem p))

theorem {hol , isabelle, tex} thm11 :

(∀ opsem p.

statically satisfied SC condition opsem p −→

(behaviour SC memory model SC condition opsem p =

behaviour release acquire SC memory model release acquire SC condition opsem p))

theorem {hol , isabelle, tex} thm12 :

(∀ opsem p.

statically satisfied locks only condition opsem p −→

(behaviour SC memory model SC condition opsem p =

behaviour locks only memory model locks only condition opsem p))

theorem {hol , isabelle, tex} bigthm :

(∀ opsem p.

opsem assumptions opsem ∧

statically satisfied tot condition opsem p −→

(rf behaviour SC memory model SC condition opsem p =

rf behaviour tot memory model tot condition opsem p))

theorem {hol , isabelle, tex} thm14 :

(∀ opsem p.

statically satisfied SC condition opsem p −→

(behaviour SC memory model SC condition opsem p =

behaviour sc accesses memory model sc accesses condition opsem p))

theorem {hol , isabelle, tex} thm15 :

(∀ opsem p.

statically satisfied release acquire condition opsem p −→
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(behaviour release acquire memory model release acquire condition opsem p =

behaviour release acquire relaxed memory model release acquire relaxed condition opsem p))

theorem {hol , isabelle, tex} thm16 :

(∀ opsem p.

opsem assumptions opsem ∧

statically satisfied tot condition opsem p ∧

statically satisfied locks only condition opsem p

−→

(rf behaviour locks only memory model locks only condition opsem p =

rf behaviour tot memory model tot condition opsem p))

val release acquire no locks condition : ∀. condition t

let release acquire no locks condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .

∀ a ∈ Xo.actions .

match a with

| Lock → false

| Unlock → false

| Load mo → (mo ∈ {NA, Acquire})

| Store mo → (mo ∈ {NA, Release})

| RMW mo → mo = Acq rel

| Fence → false

| Blocked rmw → true

end

let release acquire no locks synchronizes with actions sb asw rf a b =

(tid of a ̸= tid of b) ∧

( (* thread sync *)

(a, b) ∈ asw ∨

(* rel/acq sync *)

( is release a ∧ is acquire b ∧ (a, b) ∈ rf )

)

let release acquire no locks synchronizes with set actions sb asw rf =

{ (a, b) | ∀ a ∈ actions b ∈ actions |

release acquire no locks synchronizes with actions sb asw rf a b}

let release acquire no locks relations Xo Xw =

let sw = release acquire no locks synchronizes with set

Xo.actions Xo.sb Xo.asw Xw .rf in

let hb = no consume hb Xo.sb sw in
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let vse = visible side effect set Xo.actions hb in

[ (“hb”, hb);

(“vse”, vse);

(“sw”, sw) ]

let sc lo empty ( , Xw , ) = null Xw .sc ∧ null Xw .lo

let release acquire no locks consistent execution =

Node [ (“assumptions”, Leaf assumptions);

(“sc lo empty”, Leaf sc empty);

(“tot empty”, Leaf tot empty);

(“well formed threads”, Leaf well formed threads);

(“well formed rf”, Leaf well formed rf);

(“consistent mo”, Leaf consistent mo);

(“consistent hb”, Leaf consistent hb);

(“consistent rf”,

Node [ (“det read”, Leaf det read);

(“consistent non atomic rf”, Leaf consistent non atomic rf);

(“consistent atomic rf”, Leaf consistent atomic rf);

(“coherent memory use”, Leaf coherent memory use);

(“rmw atomicity”, Leaf rmw atomicity) ]) ]

let release acquire no locks undefined behaviour =

[ Two (“unsequenced races”, unsequenced races);

Two (“data races”, data races);

One (“indeterminate reads”, indeterminate reads); ]

let release acquire no locks memory model =

⟨| consistent = release acquire no locks consistent execution;

relation calculation = release acquire no locks relations;

undefined = release acquire no locks undefined behaviour;

relation flags =

⟨| rf flag = true;

mo flag = true;

sc flag = false;

lo flag = true;

tot flag = false |⟩

|⟩

val release acquire no locks behaviour : ∀. opsem t → program →

program behaviours

let release acquire no locks behaviour opsem (p : program) =

behaviour release acquire no locks memory model release acquire no locks condition opsem p
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val release acquire lifetime no locks condition : ∀. condition t

let release acquire lifetime no locks condition (Xs : set candidate execution) =

∀ (Xo, Xw , rl) ∈ Xs .

∀ a ∈ Xo.actions .

match a with

| Lock → false

| Unlock → false

| Load mo → (mo ∈ {NA, Acquire})

| Store mo → (mo ∈ {NA, Release})

| RMW mo → mo = Acq rel

| Fence → false

| Blocked rmw → true

end
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in-flight instructions, 32
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pre-execution, 52
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